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ABSTRACT: An introductory college physics course has been designed, implemented, and taught for several years

which combines the continuum physics paradigm with systems thinking and system dynamics tools for modeling and

simulation of dynamical processes. In short, it provides an explicit general modeling strategy applicable to all fields of

physics and even to fields outside of this science, allowing for student centered (learner directed) learning. The funda-

mental ideas of continuum physics can be cast in the form of a simple graphical image which is borrowed from the flow

of water at the surface of the Earth, and which can easily be translated into system dynamics models of processes. This

unified approach to physical processes significantly revises the standard model of physics courses, adds an important

methodological dimension not commonly used in physics instruction, and places physics beyond its own borders togeth-

er with other sciences, engineering, and social studies. It makes use of phenomenological primitives, and it deals with,

and proposes a practical solution to, conceptual problems identified in standard courses over the last few decades. 

This second paper in a series of three describes the system dynamics methodology of modeling physical processes, in-

troduces basic elements of physical dynamical models, and presents important examples of modeling in various fields

of physics. An approach which can make an integrated experimental and modeling lab the center of the learning of phys-

ics is outlined, and we discuss experience with teaching our courses to engineering and other non-science students.
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I Introduction

This paper describes in some detail how system dynamics
modeling can be integrated with the Continuum Physics
Paradigm (CPP) and with lab based activities. 

The Continuum Physics Paradigm, which serves as the
basis of a revised course on introductory college physics,
was outlined in the first paper in this series (CPP I).1 In
simple terms, the CPP takes as its starting point the obser-
vation that physical processes are the result of the flow,
possibly the creation, and the storage of some easily visu-
alized fundamental quantities such as momentum, entro-
py, charge, amount of substance, and so forth.2,3

This view of nature can be transformed into models as
they are known in physics in a sequence of simple, yet
powerful steps. Rather than standing at the beginning, the
formal representation of processes in terms of mathemat-
ical equation comes at the end of this sequence. Interme-
diate between image and equations is what we call
system dynamics modeling.

System dynamics may be looked upon as a particular way
of dealing with dynamical systems. The world of dynam-
ical systems knows many forms of modeling, among
them the work of mathematicians accompanying devel-
opments in dynamical systems; control systems modeling
and finite element modeling in engineering; or the prac-
tice of computational physics in physics research. Com-
mon to all these activities is their strong reliance upon
formal mathematical procedures. Also, in many cases,
advanced programming techniques are used.

Among the ways of dealing with dynamical systems, sys-
tem dynamics4 stands out because of its simplicity and
generality. It uses a simple metaphor and has spawned the
creation of user friendly modeling and simulation tools.5

It is general in the sense that the metaphor may be applied
to many different fields where dynamical processes are of
interest.6

System dynamics is a child of cybernetics and control en-
gineering. Created toward the end of the 1950s, it was
first applied to studies of industrial and urban dynamics.4

Today, it is mostly used in business environments,7 in so-
cial sciences, and by ecologists. The practitioners in these
fields often have in common that they are not exposed to
the kind of training in mathematics physicists or engi-
neers normally are subjected to.

They basic metaphor used by system dynamics to map
the world of dynamical systems onto models are the stock
and the flow.8 Stocks represent quantities which are
imagined as accumulating in systems, and flows repre-
sent ways of changing the amount of the accumulating
quantities. It does not take much phantasy to see the
strong similarity between this metaphor and the CPP.

System dynamics perfectly fits the basic image developed
in the CPP, and the tools developed for system dynamics
are so simple and user friendly that they make modeling
accessible to students at an early stage in their education.
Modeling of dynamical systems performed by students in
introductory physics becomes a reality.

We wish to emphasize that we believe that system dy-
namics modeling and the application of the Continuum
Physics Paradigm should go hand in hand in physics
teaching. We believe that leaving out either one of the el-
ements destroys the possibility of the synergy between
content (CPP) and form (SD modeling) in a physics
course. Stressing modeling more strongly in physics in-
struction has been advocated before—with9 and with-
out10 the use of SD tools. However, we think that model-
ing on the basis of the Standard Model of physics instruc-
tion will not lead to the desired result. On the other hand,
just trying to implement some of the important aspects
the CPP in introductory physics without the proper sup-
porting measures may be too difficult for our students.
System dynamics modeling makes it possible to deal with
the dynamical problems which are an integral and inter-
esting part of classical (continuum) physics.

The present paper (CPP II) is organized as follows. In
Section II we briefly discuss the structure of theories of
continuum physics. This will prepare the ground for us to
see how system dynamics modeling fits this structure.
Section III introduces SD modeling in physics. First we
discuss the role of our fundamental image of nature in the
choice of a modeling methodology. Then we present a
simple example to demonstrate how SD models are con-
structed. The structure of system dynamics models and of
physical processes as they are described in the CPP are
compared, and a modeling sequence integrated into a cy-
cle of modeling and experimentation is presented. Here
we also discuss how SD modeling makes use of analogies
and joins physics with the wider world of learning. Final-
ly, we present a comparison of a couple of modeling tools
useful for SD modeling in physics.

Section IV introduces a short list of basic SD structures
of dynamical physical systems. These structures will be
found again and again in actual models. Several interest-
ing examples of models are presented in Section V, rang-
ing from hydraulic, electric, and thermal systems to
applications in mechanics and chemistry. The examples
show various features of interest in real applications.

In Section VI we will stress our belief that modeling is the
activity necessary for a true understanding of physical
processes. Finally, we will discuss some practical impli-
cations of SD modeling, and report observations made in
our implementations of the approach (Section VII).
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II The structure of theories in 
continuum physics

As discussed in CPP I, continuum physics has a simple
structure which is visible in all fields treated in classical
physics. Processes are said to be the result of the flow, the
production, and the storage of certain fundamental quan-
tities such as momentum, angular momentum, charge,
entropy, mass, and amount of substance. 

A theory of physics may be decomposed into four parts.11

To see what we mean consider an example from mechan-
ics—the motion of planets in the solar system. 

1. We first have to introduce the fundamental quantities
with which we describe the phenomena. Fundamental
quantities are those which are not derived in terms of
others. Let these be momentum, momentum flux, ve-
locity, and mass. On the basis of these quantities new
ones can be defined which may be useful for stating
laws and results. Here we define the rate of change of
velocity and the position in terms of velocity, and we
introduce the resultant momentum flux as the sum of
all momentum currents with respect to a body. 

2. Now we may express our assumptions concerning the
properties of momentum by stating the law of balance
(Newton’s law of motion), a relation involving the
rate of change of momentum, and the resultant mo-
mentum flux. 

3. We need constitutive laws specifying the momentum
currents, and a relation between momentum and ve-
locity. The former are given by Newton’s law of grav-
itation—which includes the principle of action and
reaction. The latter states that the velocity of a body is
equal to its momentum divided by its mass. From the
combination of laws presented so far, a solution, i.e.,
the trajectory of a planet, may be computed. 

4. For the purpose of the example treated here, the last
element of a theory of physics—the energy princi-
ple—is not needed. In general, however, we must
make use of this principle. It relates different types of
processes—electrical with thermal, thermal with me-
chanical, etc.—and often yields missing information
in a constitutive theory.

In CPP I, a simple example of continuum thermodynam-
ics was treated which exposed precisely the same struc-
ture. We will see that system dynamics modeling reflects
this structure, leading to simple diagrams expressing our
view of how nature works. In short, system dynamics
modeling is a methodology for mapping—in just a couple
of simple and rather intuitive steps—our basic ideas and
concepts regarding physical processes onto a set of equa-

tions which can be solved to yield the evolution of the
system under investigation.

III System dynamics and modeling in 
physics

In this section, we will discuss a number of issues related
to physics and system dynamics modeling. We start by
examining the role of paradigms in modeling of physical
processes, show how system dynamics modeling maps
the understanding of nature formed in the CPP, and dis-
cuss the structure of models and the role of modeling in
general.

A. Paradigms and modeling in physics

In physics, modeling is the name of the game. Hestenes
and his colleagues10 have expressed this belief clearly in
a series of important papers, and they conclude that in-
structional strategies should take account of the model
based structure of our knowledge of the physical world.

Their claim that physics is model based should not come
as a surprise. Expressions of our knowledge of the real
world never are the real thing—they always constitute
mental representations, i.e., models of reality, indepen-
dent of the form of expression that has been chosen—
word models, graphs, or formal mathematical representa-
tions.

Hestenes forcefully points out that we do not make ex-
plicit use of modeling strategies when teaching;10 put dif-
ferently, we only teach models but not modeling. He
maintains that students learning physics could profit from
strategies which explicitly teach the process of modeling.

How we teach this process—and how we learn physics—
depends upon the concrete form taken by the mapping of
reality onto abstract representations. The best known ex-
ample of this mapping is the Standard Model of physics
instruction (SM). It reflects a particular set of beliefs of
how this transfer from reality to model should be accom-
plished. Since in the SM we use different paradigms for
fields such as mechanics, electricity, or heat we should
expect modeling to take rather different forms as well.
The Continuum Physics Paradigm, on the other hand, ex-
poses a common core structure of all fields of physics.1 A
modeling strategy based on the CPP should therefore sat-
isfy the following requirements:

1. it must reflect the common structure of physics, and

2. the metaphor of the CPP should be mapped onto the
tools used for modeling.
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Moreover, it would be of great advantage if the same
methodology could be applied to fields other than phys-
ics, which would greatly help to break down barriers be-
tween the different fields of human inquiry. It turns out
that system dynamics modeling delivers what we need.

B. Describing physical processes the system 
dynamics way

In their simplest form, system dynamics tools provide
just four elements from which models are constructed, ir-
respective of the area of application.8 Therefore we ex-
pect a single methodology to be applicable to modeling in
a science such as physics.

What is this “system dynamics way” of describing dy-
namical systems and processes? In short, it reflects what
we know from the CPP. It allows us to put into first graph-
ical and then mathematical form the image created in
continuum physics—namely, the idea that processes are
the result of the flow and the storage of certain fundamen-
tal quantities such as momentum, charge, and entropy.
Obviously, this requires elements representing stored
quantities (stocks), flowing quantities (flows), auxiliary
quantities (converters), and connectors for building rela-
tions (Fig.1).

Figure 1: In Stella,5 the four building blocks for system dynam-
ics models are the Stock, the Flow, the Converter, and the Con-
nector. The little clouds at the end of the Flow represent sources
and sinks.

These building blocks suffice to construct the models of
dynamical processes—in physics and in other sciences.
Consider the following simple example. Oil from a
straight-walled container flows through a long horizontal
pipe at the bottom. We wish to build a model which lets
us calculate the amount of oil stored in the container as a
function of time.

We begin by stating the law of balance of amount of oil
in the tank. The amount will be measured in terms of the
volume. We know that the volume of oil can only change
as a consequence of the flow of oil out of the container.

 

STOCK:
Stored Quantity

FLOW:
Flowing Quantity

CONVERTER:
Auxiliary Quantity

CONNECTOR

This knowledge is translated into a graphical representa-
tion—a combination of a stock representing the instanta-
neous amount of oil inside the storage space and a flow
representing the current of oil (Fig.2).

Figure 2: The combination of a stock and one or more flows
represents a law of balance. In system dynamics programs, the
equations of balance themselves do not have to be written;
drawing them on the screen creates the mathematical represen-
tation.

The question marks tell us that two things need to be
specified for a complete model: first, we have to state how
much oil is in the tank at the beginning (initial value), and
second, we have to determine the flow of oil expressed by
the volume flux. 

Next we ask ourselves which quantities the volume flux
depends upon. A simple expression involves two factors:
a driving force and a resistance. The driving force in the
case of a volume flux is a pressure difference. Therefore
we introduce these factors in the form of auxiliary quan-
tities, and we connect them to the volume flux to state the
assumption that the latter depends upon the former.

Figure 3: Specifying a flux means stating a constitutive law.
Here we assume that the flux of volume depends upon the pres-
sure difference across the pipe and a flow resistance.

Now we have to specify the new quantities. At this point
we will assume the resistance to have a fixed value. The
pressure difference, however, must depend upon another
quantity not yet present in the model: the level of oil in
the tank. This quantity, in turn, depends upon the present
value of the volume of oil and the cross section of the
container. All of these assumptions can be stated graphi-
cally leading to a model diagram as in Fig.4.

Volume

volume flux

Volume

volume flux

resistance
pressure difference
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Figure 4: The complete map of the model of draining a tank.
Note the feedback loop from volume to level, pressure differ-
ence, volume flux, and back to volume.

Now let us write the formal relations necessary to com-
plete the modeling step. Note that we do not have to ex-
plicitly write down the law of balance—i.e. the differen-
tial equation involving the volume of fluid. This relation
is generated automatically by drawing the combination of
stock and flow(s). All the other relations, however, have
to be expressed explicitly. The volume flux is assumed to
be equal to the ratio of pressure difference and resistance.
The pressure difference is given by the product of the lev-
el of fluid, the gravitational field, and the density of oil,
while the level is determined as the ratio of volume and
cross section. Finally, two parameters—the resistance
and the cross section—and the initial volume have to be
specified. The complete list of equations resulting from
the modeling exercise is listed in Fig.5.

Figure 5: The complete list of model equations as written in
Stella. The first line represents the law of balance of volume; it
is generated automatically by drawing the combination of stock
and flow(s). All other relations must be expressed explicitly, and
parameters must be specified.

Once the equations have been introduced in the model,
the question marks disappear, letting us know that the
model is ready to be simulated. 

The method you have witnessed here is directly transfer-
able to other physical processes, and to systems in other
fields such as biology or the social sciences. Concepts
and procedures remain essentially the same.

Volume

volume flux

resistance
pressure difference

level

coss section

Volume(t) = Volume(t-dt) + (-volume_flux)*dt
INIT Volume = 10

volume_flux = pressure_difference/resistance

level = Volume/coss_section
pressure_difference = 800*9.81*level
resistance = 1e6
coss_section = 1

C. The structure of system dynamics models of 
physical processes

Note the basic similarity between the concepts of contin-
uum physics and a system dynamics model of a dynami-
cal process. In the CPP, we model a process by first
stating appropriate laws of balance. Then, the fluxes (or
rates of production) in the laws are expressed with the
help of constitutive laws. In the example treated in the
previous section, there is one law of balance with a single
flow, and two constitutive laws—namely, a resistance law
and a capacitive law (Fig.6).

Figure 6: The map of a system dynamics model reflects the
fundamental structure of a theory of (continuum) physics. Laws
of balance form the backbone of the structure, and constitutive
laws provide the expressions for the currents (and rates of pro-
duction).

To students it is often unclear what constitutes an expla-
nation of a process. Since we call models the explanation,
the question can be rephrased: what is a model? The mod-
els we require go beyond the mere description of events
and behavior found in nature and in the lab. What we
want is a causal explanation of the processes. We want to
know 

 

why, not just how. We want to see behind the curtain
of the appearances and produce the structure made of
causal links which we take as the explanation of the ob-
served behavior. Consequently, a model exhibits the
structure of a system, and behavior follows from this
structure—and not vice-versa.

Naturally, we have to be specific and state what we mean
by structure. In the CPP, we have a clear and unique view
of what constitutes the structure of a process: it is the net-
work of stocks and flows (laws of balance) combined
with the expressions for the flows (constitutive laws) seen
in system dynamics representations of dynamical sys-
tems.

Volume

volume flux

resistance
pressure difference

level

coss section

Law of Balance

Constitutive Law 1

Constitutive Law 2



 

6

D. The modeling sequence

If we only teach models—which is common in physics
instruction10—we often begin by presenting the mathe-
matical form of the laws which we—the teachers—know
to apply to the situation at hand. Students often fail to un-
derstand the link between nature and our mathematical
representation of it.

Modeling should proceed in a number of well-defined
and easily visualized steps with the mathematical form of
the model as the end-result, rather than the beginning.
The CPP combined with system dynamics modeling nat-
urally leads to such a sequence. We start with reality (the
top layer in Fig.7) and first produce a representation in
terms of the mental image provided by the CPP: process-
es are the result of the flow, the production, and the stor-
age of some fundamental quantities, where the flows and
rates of production depend upon the circumstances (sec-
ond layer in Fig.7). Then we move on to convert the basic
image into a system dynamics model map with stocks,
flows, and special (feedback) relations (third layer). Fi-
nally, after providing the mathematical form of the rela-
tions first presented graphically, we arrive at the complete
set of equations (fourth layer) which represents the model
in a form which can be simulated.

Figure 7: Modeling leads from reality to the final desired math-
ematical relations in a number of well-defined steps. Layers vi-
sualize different representations of reality, from the mental
image created in the CPP, to system dynamics maps of the struc-
ture of systems and processes, to the final mathematical form of
the model.

E. The complete modeling cycle

Measurements made in experiments and observations es-
sentially deliver events and behavior—not models. Ex-
planations are not forthcoming from experiments, and
experimentation alone cannot yield what we need most
urgently when we try to do physics. 

However, it is quite clear that producing models and sim-
ulating them does not make a natural science yet. We al-

 

Volume(t) = Volume(t - ∆t) + 


            (Flow 1 + Flow 2) * ∆t


INIT Volume = 10


Flow 2 = – Flow constant*(Level 1 – Level 2)


Flow 1 = 0.010

Level 1 = Volume / Surface 1


Level 2 = 8.0

Flow constant 1 = 0.0050


Surface 1 = 200


Flow 1

Volume

Flow 2

Level 1
Surface 1

Level 2

Flow constant 1

I

I X

TRANSPORT PROCESSES

ASHES

GAS

LIGHT

AIR

MOTION

VAPOR

ELECTRICITY

LAVA

WATER
HEAT

ways want to compare our view of nature to reality. If the
simulation runs of models do not yield a satisfactory rep-
resentation of the behavior of a system found in observa-
tions or experiments, we have to go back to the modeling
step and revise the structure. We call a model a successful
representation of reality only after the simulations mimic
the observed behavior with sufficient accuracy. The pro-
cess described is a closed modeling cycle which is tra-
versed more than once in general.

Figure 8: The complete modeling cycle is a circular procedure
which leads from the observation of reality through several
steps of mental representations—where the final one is in math-
ematical form—to simulations, and back to a comparison to ob-
servation.

F. Making use of analogies

The simplest system dynamics tools provide us with just
a small number of general building blocks from which we
construct the models. Since the building blocks do not re-
fer to any particular physical system, we may expect the
same elements to be useful for modeling in all fields of
physics. This in turn means that there must be deep struc-
tural analogies between the fields of physics, which is in-
deed the case in the CPP.

The CPP therefore provides an important tool for learn-
ing. From an information theoretical view point, analo-
gies greatly reduce the number of independent structures
to be comprehended by students, leading to great econo-
mies of learning.

Making use of analogies, however, is an art in itself. It
must be taught and learned. Learners must construct their
understanding of the use of analogous structures. Again,
a well-defined modeling sequence which is the same in
all fields of physics facilitates the process.

A

h

l

IV

Volume

Fluid level

Surface
area

Pressure

Density

Flow

Resistance

V

t

A Modeling
Cycle

IX

current of fluid

Volume

level
resistance

delta p

density

cross section

dV/dt = -current_of_fluid
Volume(0) = 100

current_of_fluid =
   delta_p/resistance
delta_p = g*density*level
level = Volume/cross_section
...
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G. Physics and the rest of the world

The use of system dynamics modeling goes far beyond
physics. Since the building blocks of SD models are inde-
pendent of any particular field of application, we may ex-
pect the methodology to be useful, and to take the same
form, in many fields of human inquiry.

System Dynamics as it is known today is not practiced in
physics very much. It is used in social sciences and man-
agement applications, in ecology, and as a learning tool in
some high schools.12 In schools it already demonstrates
its power to unite fields which are separated by almost in-
surmountable barriers. SD modeling lends new practical
meaning to the word interdisciplinary. Physics would
profit from being a part of all of this.

H. To model or not to model…

Having access to computers—and even to modeling
tools—does not automatically produce a modeling envi-
ronment in physics instruction. There are many different
ways one can use and abuse modeling technology which
have nothing to do with modeling as such.

One positive example of using modeling technology
without doing the actual modeling is playing with fin-
ished models to learn about the behavior of systems. Nat-
urally, one should first try to learn about system behavior
out there in nature and in the lab. Still, the use of models
as simulations of real experiments may be of great educa-
tional value.13

The worst form of abuse of the new technology, on the
other hand, is this. Led by teachers who have learned
physics by writing down equations—which basically
means all of us—students are told to look for the (differ-
ential) equation representation of the process. Then they
abuse a system dynamics modeling program to “code”
the equations in graphical form, and call this exercise
“modeling.”

Neither physics nor system dynamics deserve this kind of
treatment. We should meet the challenges of physics in-
struction head on and find ways to teach physics using the
SD modeling strategy based on the Continuum Physics
Paradigm.

I. System dynamics modeling tools

Several different modeling tools are available on the mar-
ket now.5 Most system dynamics tools are very similar in
appearance, sophistication, and range of application.
Simulink, which builds on Matlab and is known mostly in
engineering (Table 1), is an important exception.

 

Table 1: A comparison of Stella and Simulink

The first tool to come out of system dynamics was Dyna-
mo. It is a very important tool for SD research, and devel-
opment of large SD models, but it is hardly useful for a
first contact with modeling. As graphical computers ar-
rived on the scene, Stella was the first to transfer the SD

Feature Stella Simulink

Building 
blocks

4 (stock, flow, 
converter, and 
information 
connector)

virtually unlim-
ited, mostly 
from control 
engineering 

Functions mathematical, 
statistical, con-
trol statements

mathematical, 
statistical, con-
trol statements

Time-discrete 
systems

yes yes

Expressions very easy to 
build

rather cumber-
some to code

External data 
import

vectors of up to 
2000 data points

matrices of 
unlimited size

Data export ASCII table export to Mat-
lab

Sub-model 
layers

2; limited abil-
ity to handle 
hierarchical rep-
resentations

many; good at 
hierarchical rep-
resentation of 
models

Presentation 
of results

quick but lim-
ited graphs

sophisticated 
data presenta-
tion only within 
Matlab

Block librar-
ies

parts of other 
models can be 
copied and 
imported

easy to build 
and maintain 
block libraries

Sensitivity 
analysis

“quick and 
dirty”

through pro-
gramming

Programming no provision 
for external 
functions or 
commands

blocks can be 
written in either 
FORTRAN or C

Numerical 
methods for 
IVPs

fixed-step 
Euler, Heun, 
and 4th order 
Runge Kutta 
methods

variable-step 
Runge Kutta 
methods; Gear 
method for stiff 
differential 
equations
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methodology to a user friendly environment. This appar-
ently has made all the difference regarding the acceptance
of modeling in larger sections of society. To our knowl-
edge, there now are three major graphically oriented
modeling tools with similar features.14

A modeling program called Madonna,15 which does not
have a graphical interface, is capable of reading Stella
equations—and running them much faster than the origi-
nal program. This tool may be of some use for larger
models.

Simulink, a module based on Matlab, applies a rather dif-
ferent metaphor to represent models of dynamical sys-
tems. It transfers the diagramming technique used for
analog computers to the digital arena. With its back-
ground in control engineering and signal processing, it is
a strong tool in this field, with sophisticated mathematical
support through Matlab. Its block library is virtually un-
limited, and allows for quick coding of control structures
(Table 1). Still, since the CPP is alien to this tool, it is fur-
ther removed from mapping physical processes than the
classic SD tools.

IV Generic structures

We do not suggest to teach modeling in physics by start-
ing with these generic structures. This would be like
teaching grammar before allowing children to speak their
first sentences. However, they may give the reader a quick
overview of basic structures of models in physics. Exam-
ples of interesting models will be given in the Section V.

A. Laws of balance

Laws of balance form the backbone of any model of dy-
namical processes. How we can introduce and deal with
these laws has been detailed in CPP I.

A law of balance in dynamical form relates the process-
es—expressed in terms of the net current, source rate, and
production rate of a substancelike quantities such as mo-
mentum, entropy, and charge—to the rate of change of
the quantity stored in a system. In system dynamics dia-
grams it is expressed by connecting one or more flows to
a stock (Fig.9). Doing this automatically creates a law of
balance in its dynamical form. Note that a system dynam-
ics tool such as Stella does not have different symbols for
currents, sources, and production rates; rather, we use the
flow for all three of them. On a purely mathematical level,
in the case of lumped parameter descriptions of systems
and processes, the three types of processes have the same
effect upon the stored quantity.

Figure 9: Laws of balance are “written” graphically by com-
bining stocks and flows.

The flows appearing in laws of balance have to be sup-
plied by constitutive laws. Some of these laws which oc-
cur often in the same form in different fields of physics
are listed below.

B. Capacitive laws

Commonly, if the amount of a substancelike quantity X
stored in a system increases, the associated level quanti-
ty—the potential ϕx—increases as well. The relation be-
tween X and ϕx, or rather between the rates of change of
X and ϕx, are called capacitive laws. In most general
terms, a capacity Cx is defined by

(1)

Well known examples of capacitive laws are the relation
between charge, capacitance, and voltage of an electric
capacitor, between momentum, mass, and velocity in
translational motion, and between entropy, entropy ca-
pacity, and temperature of rigid bodies. If the capacitance
is constant, the system dynamics representation of the re-
lation is very simple (Fig.10).

Figure 10: A capacitive law relates the potential of the quantity
X to X and to the capacitance of the system.

dX

dt
= Ix ,net + Σx, net +Π x,net

˙ ˙X Cx x= ϕ

X

Cx

phi x

phi x = X / Cx�
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C. Resistance laws

In dissipative flows, we may introduce a resistance to ex-
press the relation between flow and an associated poten-
tial difference:

(2)

Again, the system dynamics diagram for this relation is
very simple (Fig.11).

Figure 11: Resistive laws relate a flow to a driving force, i.e. an
associated potential difference.

D. Inductive laws

There are laws which determine the rate of change of a
quantity, rather than the quantity itself. Here, we are not
thinking of laws of balance—these are altogether differ-
ent—but of relations such as the law of induction, or the
relation between position and speed. For example, the
law of induction in hydraulics relates the rate of change
of the volume flux to the inductive pressure difference
(Fig.12). In general, we have

(3)

Figure 12: An inductive law yields the rate of change of a cur-
rent. Since we normally want to make use of the current itself,
an integrator has to be used to obtain this quantity. A tool such
as Stella does not provide an integrator as such. Rather—even
though it is not a law of balance—we use a flow and a stock.

I Rx x x= ∆ϕ

Ix

delta phi x R
Rx

Ix = delta phi x R / Rx�

∆ϕ x
xL

dI

dt
= −

dIx dt = – delta phi x L / Lx�

Integrator

Law of induction

E. Energy

Energy has three fundamental properties, apart from the
fact that it is conserved (CPP I): it can be stored, it can
flow, and it can be released (or bound). The first two prop-
erties tell us that we can use a law of balance for energy.
However, what is special with energy, is the relation be-
tween flows of energy and flows of substancelike quanti-
ties such as momentum and entropy in conductive flows,
and the form of the expression for the power (the rate at
which energy is released or bound). The former takes the
form

(4)

while the latter relation is

(5)

Both can be represented graphically (Fig.13).

Figure 13: In conductive transports, energy is transported
along with one of the substancelike quantities. If the substance-
like quantity flows through a potential difference, energy is re-
leased or bound at a certain rate (called power).

V A systems zoo

Here we will present a small number of interesting mod-
eling examples from different fields of physics. The ex-
amples have been chosen to exhibit important features of
physical processes. We will briefly describe the problems
and present the SD diagrams of models; in some cases,
simulation results will be presented. Providing the equa-
tions may be an interesting—and probably not very diffi-
cult—exercise for the reader. The models may be ob-
tained from the author in electronic form.16

A. Hydraulics as a door to dynamical systems

Consider the flow of a highly viscous fluid from one tank
into another. The tanks have straight walls, and they are

I IWx x x= ϕ

  Px x xI= ∆ϕ

IWx

Ix

phi x

IWx = phi x · Ix�

Pxdelta phi x

Ix
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joined at the bottom by a horizontal pipe. The model pre-
sented here solves the problem of how the levels of the
fluid adjust to the same height in the course of time.

Figure 14: The problem of the flow of a highly viscous fluid
through a pipe joining two straight-walled tanks. The reader
should try to identify the generic structures present in the model
diagram, and to provide concrete equations for the model.

B. Electric circuits with branches

The second example introduces two interesting features:
inductive behavior and the problem of dealing with the
balance of charge flowing into and out of a node. Consid-
er a simple circuit containing a capacitor and a resistor in
parallel. These elements are connected to an inductive el-
ement as shown in Fig.15.

Figure 15: Circuit diagram showing the electric elements. The
part of the circuit containing the inductor is open at the begin-
ning.
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Initially, the capacitor having a capacitance of 1.0 µF has
a voltage of 10 V. The inductance is 1.0 mH, while the re-
sistance has a value of 1.0 Ω.  The part of the circuit con-
taining the inductor is open. At the initial moment it is
closed. We wish to calculate the currents and the voltages
as a function of time. 

Naturally, many more questions can be asked about the
behavior of the circuit, such as what is the rate of change
of the current through the inductor at certain points in
time, or how much energy has been released in the resis-
tor during a certain period. To answer the latter question
we may extend the model to include the calculation of
quantities of energy.

Figure 16: The model diagram for the circuit of Fig.15. Note
how a law of balance for a node can be formulated. Since a node
does not store any charge, the sum of the three currents must be
zero. Knowing two of them, the third can be calculated. The
lower graph shows the currents through the capacitor and the re-
sistor as functions of time, respectively. 
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C. A solar collector as an environmental 
system

Consider a solar collector for heating air. This is a thermal
dynamical system which responds to the environment as
well as to its own structure. Air is pumped at a certain rate
through a rectangular duct, where the surface is the solar
absorber. We wish to calculate the temperatures of the ab-
sorber and the air as a function of time, and at the same
time we want to determine all irreversibilities and com-
pute the overall rate of production of entropy.11

We use the law of balance of entropy (Fig.17). The ab-
sorber and the air are treated as separate homogenous
bodies, which means that their heating proceeds revers-
ibly. Entropy is produced as a result of four irreversible
processes: (1) entropy flow from the absorber to the air,
(2) entropy flow from the absorber to the ambient, (3) ab-
sorption of radiation, (4) mixing of cold air with the air in
the collector. As an example, consider the last of the pro-
cesses and its rate of production of entropy:

(6)

Here, Im is the mass flux of air.

Figure 17: Note the two laws of balance of entropy for the ab-
sorber and the air, respectively (gray areas). The nodes are in-
troduced to represent “thermal resistors” for heat flow with
corresponding rates of production of entropy (black circles).
Entropy is also produced in the absorber and the air as a result
of absorption and of mixing. Environmental data, such as the ir-
radiance and the ambient temperature, are introduced as vectors
(hatched circles). Is: entropy flux; Pi s: rate of entropy produc-
tion; UA: energy transfer coefficient; amb: ambient.
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The model may be used, among others, to perform a ther-
mal optimization by minimizing the entropy produced
during operation of the system. The parameter to be var-
ied is the mass flux.

D. Transport and change of chemical species

The ozone problem furnishes and interesting application
of the transport and the reactions of chemical substances.
Here, the problem of transport and reaction are treated as
spatially separate: we have a transport of CFCs from the
factory to the upper atmosphere where the molecules re-
act and add to the depletion of ozone (Fig.18).

Figure 18: Model of the transport of CFCs from the factory to
the upper atmosphere, and reactions between O2 and ozone.
Note the hatched stocks which mimic the action of “conveyor
belts” for the transport of species. The reactions are modeled in
terms of the balance of amounts of O2 and O3, respectively. The
impact of Cl radicals from CFCs in the upper atmosphere is tak-
en into account by simple graphical relations between the vari-
ables (hatched converters). The model was adapted from one
created by High Performance Systems, Inc.5

E. Open systems: rocket motion

Open systems with variable mass nicely demonstrate that
Newton’s second law in its classic form does not go all
the way to solve problems in mechanics.17 Creating a SD
model of rocket motion, we make use of the fundamental
laws of balance of momentum and mass (Fig.19). Except
for the speed, which is of fundamental importance, the ki-
nematic quantities only appear on the side-line as derived

release
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from the speed. Besides demonstrating the relations visi-
bly, using tools such as Stella also let us treat the problem
without resorting to calculus. In particular, we do not
have to know how to build the derivative of momentum;
in the SD model the speed of the rocket is calculated sim-
ply as the ratio of the instantaneous values of momentum
and mass. We can also deal with a variable mass flux and
observe its impact on the acceleration of the rocket.

Models such as this one are easily extended to other situ-
ations such as vertical rocket motion with air resistance.
Forces on the rocket are included as additional momen-
tum fluxes in the law of balance of momentum, and quan-
tities such as the gravitational field and air density can be
made to depend upon the vertical position of the body.

Figure 19: SD model diagram and solution of rocket problem.
The model makes use of the laws of balance of momentum and
mass of the rocket. The kinematic quantities are calculated from
the velocity.

F. Using the energy principle

The energy principle is used to relate different processes
to one another. If the rate at which energy is released in
one process can be calculated, we can equate it to the rate
at which energy is bound in the follow up process. As an
example consider a car. During breaking the motor acts
on a pressure vessel having a piston. The air in the vessel
is compressed, and it stores energy. The energy can be re-
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leased again as the air expands, driving the piston which
in turn drives the wheels. In the SD model in Fig.20 we
introduce the laws of balance of angular momentum and
of volume of air (volume is created and destroyed in the
process of expansion and compression of the air, respec-
tively). The flux of angular momentum (i.e., the torque)
and the production rate of volume are related through en-
ergy.

Figure 20: Energy storage in a pressure vessel may be used to
save energy of cars. Note the fundamental structures (the laws
of balance of angular momentum and volume of air), and how
the constitutive laws for the flux of angular momentum and the
production rate of volume are related via the power of the pro-
cesses. The compression of the air follows the adiabatic law.

G. Relativistic motion

Commonly, students have difficulty understanding the ki-
nematic side of special relativity, i.e. the relations be-
tween space and time. Relativistic dynamics, on the other
hand, builds on the laws known from newtonian mechan-
ics if we only add the well-known relation between ener-
gy and mass.

Assume we specify the rest mass of a body, and the force
acting upon it. The law of balance of momentum again is
the starting point of our investigation (Fig.21). Force
(momentum flux) and momentum have the same meaning
in relativity as in classical mechanics. The speed of the
body is the ratio of the instantaneous values of momen-
tum and mass, again as in non-relativistic physics. Now,
the speed and the momentum flux determine the associat-
ed flux of energy with respect to the body; the flux is the
product of velocity and momentum flux. Again we have
used a basic relation already known from classical phys-
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ics. Knowing the energy flux we can calculate the energy
from the law of balance of energy. The energy finally
yields the mass of the body, and we have completed the
model (Fig.21). As before, we do not have to make re-
course to rules of calculus to obtain our relations.

Figure 21: The model for the problem of linear relativistic mo-
tion. We make use of the laws of balance of momentum and en-
ergy, and the mass-energy relation. Note the form of the
equations as they are assembled in Stella.

H. Extended systems and finite elements: the 
wave guide

So far all the examples presented models of spatially uni-
form systems. SD modeling, however, lets us also deal
with spatially continuous systems in a simple and special
way.

Consider a wave guide. Electromagnetic waves pass
through the guide. The phenomenon is the result of the in-
terplay of storage and conduction of charge, where the
transport is both conductive and inductive. We simply di-
vide the wave guide into a number of elements each of
which we treat as a uniform body having the properties of
capacitance, inductance, and resistance. Each element
stores charge, and the charge flows from the center of an
element to center of the next.

The model starts with the law of balance of charge for
each of the elements (Fig.22). The electric potential (volt-
age to ground) of an element is calculated with the help
of the capacitance of the element. The voltage between

Energy(t) = Energy(t - dt) + (energy_flux) * dt
INIT Energy = speed_of_light^2*rest_mass
energy_flux = velocity*momentum_flux

Momentum(t) = Momentum(t - dt) + (momentum_flux) * dt
INIT Momentum = 0
momentum_flux = 100

mass = Energy/(speed_of_light^2)
velocity = Momentum/mass

rest_mass = 1
speed_of_light = 3e8
�

Momentum

Energy

energy flux

momentum flux

mass

velocity
rest mass

speed of light

the elements is the cause of the conductive transport and
the inductive change of the currents. The law of induction
yields the rate of change of the current which, when inte-
grated, yields the current (Fig.16). After constructing the
model for a single element, we simply copy it and con-
nect the copy to the first element, and so forth. This pro-
duces a special kind of finite element model of the one-
dimensional wave guide (Fig.22). It may be employed,
for example, to investigate the speed of propagation of
waves, and the influence of the conductance of the mate-
rial.

Figure 22: A system dynamics finite element model of a one-
dimensional wave guide. The wave guide is divided into sec-
tions, and each section is modeled as a spatially uniform body.
Note the similarity of a part of the model for a section with the
model of Fig.16. By defining the voltage at one end (Uo) as a
pulse, we can observe the progress of the pulse through the
wave guide and determine its speed. In the diagram, Iq stands
for a current of electric charge, U denotes the voltage, and C, L,
and G stand for capacitance, inductance, and conductance, re-
spectively.

VI Modeling and understanding

Modeling is the name of the game, and the model is the
explanation. Therefore it would seem that we should cre-
ate models if we want to understand physical processes.

Actually, there is nothing new about this statement. We
always teach models when we teach physics. However,
many times the models are woefully inadequate as the
following well-known example shows. To demonstrate
the action of inertia, we can use a heavy block suspended
from a thin string (Fig.23). We attach another thin thread
at the bottom, and pull on it either hard or very slowly.
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Depending on how we do this, the lower or the upper
thread will break.

Figure 23: A block suspended from the ceiling, free body dia-
gram, and the equations describing the system.

Attributing the observed effects to the inertia of the sus-
pended block already constitutes a model. However, it
does not explain much at all. We could then resort to our
usual analysis known from introductory Newtonian me-
chanics and produce the appropriate equations describing
the system (Fig.23). Inspecting them shows that they still
do not answer the question of why things happen as they
do. Prescribing the force with which we pull on the lower
string as a function of time is not sufficient to compute the
tension in the upper string, precisely since the effect of in-
ertia of the block cannot be determined. The explanation
fails.

An explanation must make use of the elastic (or plastic)
properties of the strings. We could model them as ideal
springs which break as the momentum current through
them becomes too large. It should not bee all too difficult
to set up the system dynamics model of the system of a
block and two springs (Fig.24). We make use of the law
of balance of momentum for the block and introduce the
three momentum fluxes due to gravity and the springs. In
the model diagram of Fig.24, the springs are represented
as inductive mechanical elements responding to a speed
difference. Instead of prescribing the force with which we
pull on the lower string, we specify the speed with which
we move the lower end of the lower spring downward. A
constant factor k allows for changing this speed (Fig.24).
Pulling quickly means the factor is high.

Simulation of the model with a small and a large factor,
respectively, shows that in the former case the tension in
the upper string is always larger than that in the lower one
by an amount which is roughly the weight of the body
(Fig.24); therefore, the upper string reaches the critical
tension earlier than the lower one. If we pull fast, on the
other hand, the tension in the lower string quickly over-
takes that of the upper thread; it will break earlier. Here
we clearly see the action of inertia (i.e. the momentum ca-
pacitance) of the body: the momentum supplied through

Fs1

Fs2

FG

m
ma = Fs1 + Fs2 + FG
FG = mg
Fs2 = f(t)

the lower string does not flow fast enough through the
body to reach the upper string. Inertia as momentum ca-
pacitance shows its effect in delaying the flow of momen-
tum through the upper string.

Figure 24: System dynamics model diagram of a block sus-
pended from an ideal spring. We pull on the block using a sec-
ond spring. Note that the springs have been modeled as
inductors where the inductance is the inverse of the spring con-
stant D. If we pull slowly (small value of k), the tension in the
upper spring is always larger than that in the lower one. Pulling
fast, on the other hand, quickly lets the tension in the lower
spring surpass that in the upper one. The critical value for break-
ing is reached earlier by the upper or the lower string depending
on how we pull.

VII Modeling, teaching, and learning

We have argued already in CPP I why we propose to
change the fundamental paradigm upon which we build
the introductory physics course. In the current paper we
have demonstrated the relation between this paradigm
and SD modeling in physics. We should finally address
the question if SD modeling can actually change the form
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of learning physics, and maybe lead to improvements in
the learning process.

The modeling approach detailed in this paper can be ap-
plied in many different ways in physics courses, from a
superficial demonstration of SD modeling and SD tools
to making it the foundation of a (lab based) course. Here
we will briefly present what we have done so far in our
courses, and discuss some important questions. 

A. Integrating experimental and modeling labs

Recent developments in physics education have included
new forms of introductory college courses which are
more or less lab based. We just mention Activity Based
Physics,18 and the CUPLE Physics Studio.19 Especially
the Physics Studio format shows how lecture, lab, and
recitation can be replaced by an integrated physics course
which seems to have great merit.

SD modeling is perfectly suited for activity based and in-
tegrated physics courses and it could be put at the center
of learning and teaching. Independent of the degree of
use, SD modeling should be integrated with the experi-
mental lab, student-teacher interaction, and the use of
modern interactive media and the classic text book, in-
cluding problem solving.

Modeling should be a lab (or studio) activity. This en-
ables us to combine modeling with the comparison of
model behavior and real behavior—either through obser-
vations in nature or measurements in experiments—to
complete the modeling cycle of Fig.8. The latest form of
our integrated lab lets students work two hours every two
weeks for a year on a small number of medium sized
projects (Table 2) which always involve experiments
(possibly including the design of data acquisition strate-
gies), model construction, model consumption (simula-
tion), comparison of measurements and modeled beha-
vior, model refinement, and so forth.

So far we have kept the format of teaching physics in
small classes, with about 20 to 25% of the time spent in
still smaller groups in the lab. In recent years we have
changed the lab part of the course by integrating experi-
ments with modeling activities. While this is far from
what may be achieved in the future with the entire course
centering around the modeling activity, first results of the
modest attempts are encouraging. Apart from the obvious
attraction of using computers in today’s learning environ-
ments, students’ reactions support the claim that model-
ing leads to a different quality of the learning process, and
that the integration of modeling with experiments greatly
increases motivation for—and understanding of—what it
is we are doing in a physics course. Students mention that
seeing relations put into the form of model diagrams

greatly aids in understanding physics problems and the
process of solving them; that being able to model real life
problems much more easily increases their interest in
their work; and that modeling the behavior of systems ac-
tually observed in the lab leads to still better appreciation
of foundations and the applications of physics. 

B. Solving physics problems using SD models

There is a further use of modeling not mentioned so far:
it can be employed in problem solving if we allow for a
slight reformulation of problems and the process of solv-
ing them. 

As the normal physics problems have been constructed to
let students solve problems without needing access to
(computer) modeling, they ask only those questions
which can be answered directly. Creating SD models of
dynamical processes, on the other hand, stresses finding
the structure of the problem rather than the answer to a
particular question. In SD models, answers must be read
from the model runs. 

Actually, using SD modeling in problem solving teaches
us how to approach paper and pencil questions as well. It
teaches us not to look so much for the answer to the ques-
tion posed, but to first determine what is going on in the
system described, and then to write down the relations for
the processes which have been identified.

The typical physics problems can be added to modeling
and model consumption activities: we can ask questions
the modelers must answer, questions which strongly re-
semble classic problem sets. Put differently, a physics

Table 2: Examples of experimental and modeling 
projects

Field Description of project

Electricity Charging and discharging of capac-
itors.

Thermal Pouring hot water into a thick-
walled container. Heating and evap-
orating water.

Hydraulics Capacitive, resistive, and inductive 
effects in discharging a container.

Translation Collisions of model trains with dif-
ferent types of shock absorbers.

Bungee jumping.

Rotation Torsional pendulum with damping 
and harmonic driving.
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course which makes use of modeling may profit from a
redesign of at least some of the usual end of chapter ques-
tions and problems. We may wish to have a part of the
problems replaced by those which are posed as part of the
simulation exercises during modeling activities.

C. Modeling, learner centered learning, and 
constructing one’s knowledge

All that has been said so far indicates that SD modeling
can lead to strong learner centered learning strategies.
Modeling simply should not be left to lectures. If we only
talk about modeling we will never achieve its potential.
Fortunately, the tools available today are so simple and
powerful that whatever may have been true in the past—
that the actual process of modeling dynamical systems is
too difficult for students—isn’t true any longer. 

On the other hand, SD modeling activities may serve as
the source of the construction of understanding—in the
constructivist sense of the word. Constructing models is
obviously what is required of anyone learning physics.
Therefore, if we really let students do this on their own
we may hope that they will be able not only to be active
but also to construct their own knowledge.

VIII Summary: Learning physics through 
SD modeling?

If we take the claim of SD modeling serious—namely
that it leads to a well organized and easily visualized
modeling process for all types of dynamical systems—
we should attempt to make modeling aided by physical
process thinking the starting point of learning and teach-
ing physics. Our own activities at Winterthur are a far cry
from what may be possible in the future.

There is strong evidence that the combination of the CPP
and system dynamics modeling can lead to a new and im-
proved physics course at different levels of the curricu-
lum. Learning through modeling activities is a distinct
possibility brought to us by a combination of a clearer un-
derstanding of the structure of laws of physics and easy-
to-use tools for putting this understanding into the form
of models which can be simulated.

At TWI we have an environment which is particularly
conducive to our developments. As future engineers, our
students see how physics can be applied in their fields
particularly through the modeling of dynamical process-
es. Indeed, our still timid efforts at introducing modeling
very early in the education of engineers have greatly in-
creased the use of modeling in engineering courses and

project and thesis work which follow after the introduc-
tory courses. 

However, we believe that much of our experience with
student reactions can be transferred to other settings. In-
deed, we have been teaching a section on physics as part
of a general graduate course on system dynamics model-
ing. The participants come from many different fields. So
far we have had sociologists and economists, business
people, management consultants, and engineers, chem-
ists, physicists, and ecologists taking part. The section on
physics is purely modeling based; there is no standard
course with lecture and lab. It is interesting to see that
these people, many of whom have had some physics
years or decades ago in high school—where they feared
it—take to physics and integrate it into their knowledge
from the point of view of somebody interested in dynam-
ical systems.

Our engineering students also realize that the modeling
approach can be used not just in physics and engineering,
but also in fields ranging from other natural sciences all
the way to the social sciences and management. Seeing
the relation between different fields of human activity
brings advantages our students don’t want to miss once
they have been exposed to this view.
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