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Abstract. Collocation with piecewise continuous polynomials is studied for use in the numerical
modelling of stellar evolution. Accuracy and convergence of the method are demonstrated for a
5 M, star with a convective core. Collocation should be further studied since it is likely to lead to
significant gains in computational efficiency for the construction of stellar models.

1. Introduction

Modern numerical computation of spherically-symmetric stellar evolution is, in almost
all cases, carried out by schemes similar to the one developed by L. Henyey and his
collaborators (Henyey et al., 1964). This numerical scheme is very powerful, since it
allows for the inclusion of detailed opacities, equations of state, and thermonuclear
energy generation rates, and also provides for the detailed determination of the spatial
and temporal nuclear abundance variations. In addition, the scheme allows the
accuracy of a calculation to be increased simply by increasing the number of Lagrangian
mesh points in a model. In the collocation method which we describe in this paper
features of the Henyey method are preserved; but, in addition, the collocation scheme
contains a much greater flexibility which should allow for a significant improvement
in computational efficiency. Also, the introduction of a different numerical method
will provide a means for the comparison checking of numerical results for complicated
phases of stellar evolution.

Collocation methods are now commonly used in aeronautical and chemical engin-
eering, and their use in these areas described in the books by Kopal (1961) and
Finlayson (1972). A much more flexible collocation method is described in a paper by
Russelland Shampine (1972). Here, they study a collocation scheme based on piecewise
continuous polynomials. The scheme described in this paper is patterned after the one
of Russell and Shampine.

For our collocation scheme a Lagrangian mesh has been selected. We shall refer to
the region between two consecutive mesh points as a zone. The unknown solution to
the stellar structure equations is, within each zone, written as a polynomial of pre-
selected degree N+ 1. The N+2 unknown polynomial coefficients in the solution for
each of the dependent variables are determined by requiring that the polynomials
exactly satisfy the four stellar structure equations at N+2 arbitrarily selected collo-
cation points in each zone. Rather than solving for the polynomial coeflicients, our
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scheme equivalently involves solving for the unknown variables at the collocation
points. The scheme is arranged so that at the first collocation point of the innermost
zone and at the last collocation point of the outermost zone of the model, the boundary
conditions are introduced. Also, the scheme automatically produces solutions for the
radius, luminosity, pressure, and temperature that are continuous at the zone edges,
although the first and higher derivatives will have a small mismatch (which is reduced
as the numerical parameters are adjusted so as to produce solutions of greater
accuracy). At the transition between a convective region and a radiative region, how-
ever, a derivative mismatch may be expected in the exact solution.

Since we expect the collocation method to produce accurate solutions, but with
fairly large zones, a means must be provided for the accurate determination of the
location of the convective-radiative (CR) transitions, which are assumed here to be
sharp. We accomplish this by introducing the locations of the CR transitions as
additional unknowns and then solving for them simultaneously with the other
unknowns. Initially we were concerned about the possibility that this scheme would be
slow to converge, or even diverge, but in our tests so far with main sequence-like
models with convective cores we have found the CR transition points to converge
satisfactorily.

For the systems of differential equations of the form

o Rl A, =1,

collocation is often less efficient than other standard methods if the functions F; are
expressible in short, simple algebraic form. In the stellar evolution problem, however,
nearly all of the computational effort goes toward the evaluation of the functions F;
and their derivatives. Hence, it is desirable to use a scheme which allows the number of
evaluations of the F;’s and derivatives to be reduced, for a given accuracy. Collocation
has the flexibility to accomplish this reduction by variation of the order N+ 1 and the
number of zones M. A smaller number of collocation points (in total) is required to
achieve a given accuracy as the order N+1 is increased. But an increased value of
N+1 produces a linear system of increased bandwidth. Therefore, it should be possible
to minimize the total computational effort at some particular value of N+ 1. This
optimum value will depend upon the complexity of the F,’s in relation to the efficiency
of the algorithm used for solving the linearized equations.

2. Formulation of the Nonlinear Equations

We wish to obtain solutions of the usual stellar structure equations in spherical sym-
metry. We proceed as in the Henyey method by solving the structure at a number of
discrete times. With respect to time integration, collocation introduces no significant
changes in method. Rather, collocation provides a different method for obtaining
each stellar model. We omit in this paper a treatment of time-varying nuclear abun-
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dances and the term dQ/d¢ in the heat equation. We shall treat these in the future,
but for this paper we wish simply to investigate the convergence and overall accuracy
of the collocation scheme as applied to relatively simple stars.

The transformed stellar structure equations are of the form

dy® 1 df (dg \~! —2,-1
= =L 1
dz ~ 4ndz (dy“’ ¢ W
dy®  df [ dk \7?
e [ 2
dz ~ dz (dy<2>) © @
dy® Gdf (dh\~', _,
- nilom) o ©
dy®  Gdf( dl\! T
i (pm) Ve @
with the boundary conditions
Gy, y2, 59, ) =0, ®)
GOy, y®, y®, y®) = 0, (6)
at the inner boundary of the model (usually near the center); and
Bi(y®, y@, y®, y®) = 0, (M
By(y®, y?, y®, y®) = 0, ®)

at the outer model boundary (the base of the stellar envelope, usually). The dependent
variables yU, ..., y® are related to the radius r, local luminosity L, total pressure P,
and temperature T by

r=90"), L=k(y?®), P=h(®), T=Iy®), ©)

where the exponential-like functions g, k, 4, and [ are introduced in order to reduce
the range of variation of the unknowns. The independent variable z is related to the
Lagrangian mass coordinate m by

m = f(2).
The quantities ¢ and ¢ are the density and thermonuclear energy generation rate,

respectively and are known functions of the local values of P, T'and composition. V is
the local value of the logarithmic temperature gradient

=dlnT
“dmnpP

and, in general, is a function of the local values of the unknowns and of the local
composition. G is the constant of universal gravitation.

The range of z between the inner and outer boundaries of the model is divided into
M zones by the set of points a5, a,, ..., ay 1. These points should be selected so as to
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equalize among all of the zones the maximum change of any of the four dependent
variables across the zones. This is easy to automate in an evolutionary sequence of
models since it is sufficient to do this zoning on the basis of the last computed model.
The a;’s are regarded as fixed parameters, except for those few which are designated as
CR transition points. These CR points will be modified during the iteration process.
Within each zone a variable & is defined (0<¢<1) such that in the p-th zone z is
related to & by

z=a, + {(ap+1 — ap). (10)
In each zone ¢ is now regarded as the independent variable.
Within each zone the unknown functions y¥, ..., y* are each written as a poly-

nomial of degree N+1

WO = S dven, (=1, ..., 4), an

where we have suppressed indication of the zone number p. We select N + 2 collocation
points &; in each of the zones, where &,=0 and &y, =1. At these points the unknown
functions have the values

N+1
W =3 dver
mz=0 é
(12)
N+1

I

> Bpd®, (r=1,..,4 i=0,..,N+1).
m=0

Now we replace the derivatives dy”/d¢; occurring in the differential equations by
linear combinations of the y{™’s in the zone. Differentiating Equation (11) at the
collocation points we have

dy(r) N+1

=S et
G |ece, = 20
N+1 (13)

i

S Cod®,  (r=1,..,4 i=0,..,N+1).
m=0

Equations (12) and (13) define the matrices B and C. Eliminating the quantities
d{ between Equations (12) and (13) we find that

dy(r) N+1
= Z Ay, r=1,..,4 i=0,..,N+1), (14)
d¢ |e=y, =0
where the matrix A is calculated from
A = C+(B)~!. (15)

By use of Equation (14) the differential equations at the collocation points become
the following set of nonlinear algebraic equations:
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N+1 "1 df dg -1 _ _
Zo Aimysnl) - Z‘ﬁ& (W) g ZQ 1] B (ap+1 - ap) = 0;

(p=1,..M, i=1,..,N+1), (16

N+1 [df ( dk -1
28 = [ (5m) .- @ -0

(p=1,.,M, i=1,..,N+1), (17

N+1 (G df (dh\~! _
2 Amyd + Z;a;(d—;@;) g ‘?f]

(ap+1 - ap) =0,
m=0 .

z=2z;

(p=1,...,M, i=0,..N), (18)

S Awi + [ L () A1V @es =2 =0,

r=1..,M, i=0,..N), (19
where
z; = ay + $(ape1 — @)

within the p-th zone. Notice that Equations (16) and (17) are written for the last
N+1 collocation points in the p-th zone while Equations (18) and (19) are written for
the first N+1 collocation points in the zone. The first (i=0) and the last (i=N+1)
collocation points of a zone are ‘shared’ with the neighboring zones. The unknowns
at these zone edges belong to the polynomials expansions of two adjacent zones. Hence
continuity is automatically incorporated into the solutions. The boundary conditions,
Equations (5) and (6), are added to the set of equations for the first zone (at i=0) and
the outer boundary conditions, Equations (7) and (8) are added to the set of equations
at the Mth zone (at i=N+1).

At a convective-radiative transition the location of the zone edge a, is unknown.
Hence, an additional equation

VeV, ¥?, @, ¥, y¥) = Ve3P, y2, @, ¥, y®) = 0 (20)

must be added to the set of equations. V,,4 is the usual radiative temperature gradient
and V., is the critical gradient for the onset of convective instability.

For order N+ 1 collocation with M zones and K CR transitions we have 4[M(N +
1)+1]+ K= Ny equations and Ny unknowns. The set of equations to be solved is
given by Equations (5)-(8), and (15)-(20). The number of collocation points involved
is No=M(N+ 1)+ 1. After the unknowns at the collocation points are determined, the
solution elsewhere is easily evaluated using Equation (11) and

N+1
df? = > By’ @1
m=0

in each of the M zones.
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3. Solution of Nonlinear Equations

The unknowns are arranged in a one-dimensional array in the following sequence:

o 1 4 1 1 2 . " 3 4 1 2 . . .

zone ] y(() )a sees ng )5 y(l )’ St yl(v-lls J’fviu zone 2 yg) )’ y(() )s seeo yl(v'-}—l’ yl(\’g—l’ -.-520ne gq.

3 4 1 2) . 2er - - B 3 4 1 2) .

y(() )a y(() )a ) y;\l-}—l’ J"fv}ru CR transition. aqa zone q+] y(() ), y(() )’ (RS yl(v-}-l’ yN-}-l,

; zone M: y®, y§» 1) ¢ .. Th linear equations are also arranged
" Y8, ¥80, o Y4, s Y$ 1. The nonlinear equ g

in the corresponding order. The number of unknown CR transition points will depend
on the evolutionary state and type of star being modelled.

The nonlinear equations can be solved by Newton’s method. The Jacobian of the
system is illustrated schematically in Figure 1. The nonzero elements are located in
sparse blocks along the main diagonal, which, for interior zones, have size 4(N +2) by
4(N+1). Block dimensions are different for blocks adjacent to either boundary or a
CR transition point (or both). We have found it convenient to incorporate Equations

0000
0000 &
([ ]
) o
® [ ]

% CR TRANSITION
. S
"
83538 %0 %

=z Z Z
(I)lj
o

Fig. 1. Diagram showing the location of generally nonzero matrix elements of the Jacobian matrix.

Open circles indicate matrix elements which change from iteration to iteration. They represent deriva-

tives of the left hand sides of Equations (16)-(20) with respect to the dependent variables y{’, y¢?,

¥, ¥, a,, where the subscript i designates the collocation point at which a given equation (repre-

sented by a row in the diagram) is written. Filled circles indicate matrix elements (elements of the

matrix A defined by Equation (15)) which are constant from iteration to iteration. They are derivatives
of the polynomial derivative of Equations (16)—(19) with respect to the several

1 2) (3) (4) 7
D, P, v, v, m#£dL
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(5)—(8) and (20) into adjacent blocks. This produces blocks of eight different types
altogether. We have solved the linearized equations with a gaussian block elimination
scheme similar to the one described by Henyey et al. (1964). This is probably not the
most efficient scheme for this system, although it is simple to program since the
matrix elements can be calculated one block at a time as the solution proceeds, with
no need to store the entire matrix in the computer. We have used a subroutine for
general linear systems for solving each block. This can probably be improved upon in
the future.

Special care must be taken in evaluating derivatives with respect to a,, a CR transi-
tion point. Equation (10) shows that for a fixed value of ¢, as g changes, so does the
physical location of the collocation points in the adjacent zones. These changes must
be incorporated into the corresponding matrix elements. Otherwise the iteration pro-
cess may not converge.

4. Results from Test Calculations

Our initial tests of collocation were made on a 5 M, Main Sequence star of uniform
composition. The equation of state used was that of an ideal gas with radiation.
Equilibrium CN cycle hydrogen burning was included with Zcy=0.01, and Cox and
Stewart (1970) opacities were used with X=0.7, Z=0.01. This choice of material
properties was not intended to generate models which are as physically accurate as
possible, but only to produce models close to Main Sequence stars. Convection was
assumed to occur and dominate energy transfer if V4> V,4, where V,4 is the usual
adiabatic temperature gradient.

Our test calculations did not include model envelopes or atmospheres. Rather, the
collocation method was applied throughout the entire star. This was done in order to
save the trouble of programming envelope routines at this time. But it also provided
a test of the method over a large range of the unknowns. The boundary conditions
used at the surface were

Lsurf = 47Tr52urfo'T:;|rf ) (22)
Py = § g T:urf, (23)
3¢

where o is the usual radiation constant. The boundary condition given by Equation (23)
is rather arbitrary. It merely insures a low photospheric pressure. The innermost edge
of zone 1 was located at mass fraction 2x 10-6. The central conditions r.,=0 and
L.=0 were put into the form of Equations (7) and (8) by use of the following equations
at the first collocation point:

3m,
- = 24
4rr3g, O 4
1= _yp, (25)

L,



70 RICHARD L. SMITH AND HANS FUCHS

where the subscript ‘¢’ refers to the center and the subscript ‘1’ refers to the first
collocation point of the mesh. g, and ¢, are known functions of the central pressure
and temperature which are in turn functions of P; and T, as determined by truncated
Taylor expansions at the first collocation point. Alternatively we could have intro-
duced the center as an additiona! mesh point and retained the first two stellar structure
Equations, (16) and (17), in the first zone.

For the calculations described here we have used the following variables:

M = sinh~! (#/1.0 x 10° cm),

@ = ginh~! (L/4.0 x 10*° ergs~1),
3 = exp (T/1.0K),

@ = exp (P/1.0 dyne cm~2),

z=1In (1 _m_1 )
- M+
where m/M is the mass fraction and the ‘surface spreading’ parameter # is 1078,
For a standard of comparison we first calculated a model using the fitting method

and a very accurate subroutine for step-by-step integration of differential equations.
This comparison model has the following properties:

=

<N W

Loy = 2.41 x 1037 ergs1,

Foure = 1.75 x 10 cm,

T. = 2.68 x 10°K,
P, = 7.12 x 107 dyne cm~?2,
Zeore = —0.25654,

where z ... gives the position of the edge of the convective core. We believe that this
comparison model is an accurate solution of the equations to 1 part in 10%, or better,
everywhere.

To assess the accuracy of the collocation method we converged a number of models
with different numbers of zones (placed so that the maximum change of a dependent
variable across a zone was equalized among all of the zones), with different orders
N+1, and with three different choices for the placement of the collocation points
within the zones. These three choices were equally spaced points (E), the zeros of the
shifted Chebyshev polynomial of degree N (C), and the zeros of the shifted Legendre
polynomial of degree N (L), in addition to the points {=0 and £=1. Many other
choices for the placement of the collocation points are possible. DeBoor and Swartz
(1973) and Russell (1974) have shown that the use of Legendre polynomial zeros is
more accurate than the use of equally spaced points. Chebyshev zeros are expected
to be the optimum choice for high order N+1 (see, for example Lanczos, 1957). The
accuracy of the converged models is shown in Table I. In this table N, is the total
number of collocation points in the model and M is the number of zones. The last five
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TABLE I
Ne N M Points Ay Ay 4y Ay® AZeore
91 1 45 E +0.0308 +0.0459 +0.0060 —0.0186 -+0.0034
94 2 31 E 0.0203 0.0234 0.0052 +0.120 0.0023
93 3 23 E 0.0064  0.0084  0.0077  0.0080  0.0018
91 4 18 E +0.0209 +0.0246 +0.0098 +0.0141 +0.0028
94 2 31 C —0.0185 —0.0218 +0.0059 —0.0060 —0.0032
93 3 23 C —0.0049 —0.0052 —0.0025 —0.0039 —0.00080
91 4 18 C —0.0069 —0.0054 —0.0030 —0.0045 —0.00044
94 2 31 L —0.0018 —0.0013 +0.0055 +0.0020 —0.00047
93 3 23 L —0.0001 —0.0002 +0.0016 +0.0004 —0.00006
91 4 18 L —0.0014 —0.0006 -+0.0024 +0.0006 —0.00004
201 1 100 E 4+0.0082 +0.0138 —0.0024 +0.0041 +0.0011
205 2 68 E 0.0062  0.0081  0.0018  0.0024  0.0010
205 3 51 E 0.0016 0.0023 0.0001 0.0011 0.00042
201 4 40 E +0.0017 +0.0017 +0.0002 +0.0010 +0.00035
205 2 68 C —0.0045 —0.0066 +0.0024 —0.0015 —0.00066
205 3 51 C —0.0007 —0.0010 +0.0000 —0.0004 -0.00002
201 4 40 C +0.0000 —0.0003 —0.0001 —0.0001 +0.00017
205 2 68 L +0.0001 —0.0002 +0.0003 +0.0002 +0.00011
205 3 51 L 0.0001 +0.0001 +0.0000 +0.0000 +0.00016
201 4 40 L 0.0001 +0.0000 +0.0001 +0.0001 +0.00017

columns of the table give the errors in the solution at the surface and center of the
model and in the location of the convective core edge. This error is defined by, for
example,

1 — 1 1
Aygux)'f - (yém)-f)collocation - (ygm)'f)exact’

where the ‘exact’ value is obtained from the comparison model.

An examination of Table I reveals the following general trends. (1) Increasing the
number of zones, for a given order, increases the accuracy. It should be noted here
that if separate stellar envelopes were calculated in order to provide the outer bound-
ary condition, then about two-thirds as many collocation points would provide the
same accuracy as our models since many of the zones were introduced in order to
represent the rapid drop in pressure near the surface. (2) An increase in order N+1
generally brings an increase in accuracy, for a given total number of collocation
points. The 4th line of Table 1is a puzzling exception; we have not been able to find
the reason for this loss of accuracy. (3) The use of Chebyshev or Legendre points
produces a significant increase in accuracy as compared to evenly spaced points and
this increase in accuracy comes at no cost in computational effort. For small values of
N the Legendre points seem to give more accurate solutions than do Chebyshev points.
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The amount of computer time ¢ required to compute one iteration is given approxi-
mately by
tx t{M(N + 1) + 1} +
+ t,M{64(N + 1)® + 48(N + 1)* + 36(N + 1)},

where the first term gives the amount of time required for the evaluation of the matrix
elements of the Jacobian and the second term is the amount of time required for the
solution of the linearized systeni. The numbers ¢, and ¢, will depend on the efficiency
of the program, the complexity of the ‘physics’ used, and the sophistication of the
algorithm for solving the linearized system. In the program written for the test calcula-
tions described in this paper the ratio ¢/, was about 700.

Table II shows the convergence of the most accurate of the models represented in
Table I. This convergence behavior is typical of the convective-core models we have
examined. The second column of the table gives average correction for all of the
unknowns for each iteration. The next four columns show the maximum correction for
each variable type, and the last column shows the corrections for the convective zone
edge. We find convergence difficulties only when the number of collocation points is
small and the order is large, e.g., No=25, N+1=5.

TABLE 11

Iteration |Jyay [07 ]| max [07® | max [6Y® | max [6Y® | max 0Zcore

1.2x10-2 6.8 x1072 1.9%x10-1 2.1x10-1 5.7x10°! —2.3x%x10"2
3.8x1073% 4.1x10°3 55x107% 2.6x102 6.2x10°3 —2.1x10-3
3.0x10~% 8.8x10-5 1.4x107# 1.5x10-* 29x%x10-5 —1.8%x103
2.0x10-8 1.6x10-° 5.6x10-8 55%x10°° 2.2x10-8 —1.3x10-°
53x10712 43x10-° 1.6x10~'* 1.8x10-'* 6.8x10"1* —1.6x10"14

VA W=

We conclude this section with some programming notes. We have found that an
accurate solution of the linearized system, with iterative improvement where neces-
sary, can actually save computer time by reducing the total number of iterations
necessary to solve the nonlinear equations. Secondly, the locations of the CR transi-
tions must be monitored by the program during the iteration process so that re-zoning
of adjacent zones can be carried out if the ‘current’ CR transition ‘passes through’ a
neighboring (fixed) zone edge. This re-zoning can be done accurately and easily since
Equations (11) and (21) provide the necessary interpolation formulae.

5. Conclusion

We find the collocation method described here to be clearly suitable for the calculation
of detailed stellar evolution. This method should be further studied since it has suffi-
cient adjustability to allow significant improvements in computational efficiency intwo
areas. The first is the location of the collocation points. There is an enormous flexibility
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in their placement, and an automatic proceedure for determining their placement is
clearly needed. Secondly, zoning efficiency can be improved. Here we have zoned all
four dependent variables identically. This is inefficient for variables which do not
change much across a zone. Independent zoning for each of the dependent variables
should be possible since collocation provides the necessary interpolation scheme.
Independent zoning would, however, involve more complicated linearized systems.

This work was supported in part by National Science Foundation grant AST76-
21314 at Rensselaer.
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