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ABSTRACT:

 

 In thermoelectricity, the Seebeck coefficient and the Peltier factor (which describes the coupling between

currents of charge and of entropy) are equal. This is explained as a result of the Onsager reciprocity relations which are

derived by means of statistical arguments. Here we show that this equality is suggested by reasoning based upon contin-

uum physics. The expressions for the entropy production rate and the power of the various processes that occur in a ther-

moelectric device contain both material coefficients. Since we have independent information on the form of the

dissipative and reversible terms in the expressions, we can derive the relation between the Seebeck coefficient and the

Peltier factor by identifying these terms. This derivation is expected to simplify introductions to thermoelectricity.
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I Introduction

 

Applications of thermoelectricity have met with in-
creased interest in recent years.
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 Thermoelectric power
generation in space or cooling of electronic devices are
just two of the many examples. 

The theory of thermoelectricity is not considered to be an
introductory topic in general.
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 There are at least two rea-
sons. First, the theory is part of irreversible thermody-
namics which is commonly treated as an advanced sub-
ject. Second, we need the Onsager reciprocity relations
which are proved on the basis of complex microscopic ar-
guments.
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The first of these challenges is met by the dynamical the-
ory of heat that introduces entropy and irreversible pro-
cesses right from the beginning.
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 For learners, reasoning,
derivations, and practical computations making use of the
balance of entropy and of entropy generation become
standard. For the second, we propose a simplified deriva-
tion of the relation between the Seebeck coefficient and
the Peltier factor. It is based upon the same continuum
physics model which is used to present the theory of ther-
moelectricity.

The Seebeck coefficient 

 

ε

 

 and the Peltier factor 

 

α

 

 are in-
troduced as follows. The former establishes the relation
between the temperature gradient and the gradient of the
electrochemical potential 

 

µ

 

ec

 

 if no electric current is al-
lowed to flow through the thermoelectric device:
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(1)

 

This is the formal expression of our knowledge gained
from the use of thermocouples. A temperature difference
of 1 K leads to an electro-chemical potential difference of

 

ε

 

 volts.

The Peltier coefficient 

 

α

 

 is the factor that determines the
coupling between currents of charge and of entropy.
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 It is
observed that, even for isothermal conditions, entropy is
transported through a thermoelectric cooling device
(Peltier device) if an electric current 

 

j

 

q

 

 is made to flow
through it. This observation is summarized as follows:

 

(2)

 

S

 

 and 

 

q

 

 refer to entropy and charge, respectively, 

 

j

 

 de-
notes a current density vector. Expressed graphically, an
electric current sweeps 

 

α

 

 units of an entropy current
along with it when there is no temperature difference.
Note that the entropy flow in Eq. 2 is expected to be non-
dissipative in contrast to conduction of entropy that is
caused by a temperature gradient.

Since the phenomena of thermoelectric power generation
and of Peltier cooling are assumed to be caused by the

same underlying effect, we should expect a relation to ex-
ist between the Seebeck coefficient and the Peltier factor.
In fact, as we know, they are equal. This can be shown to
be a consequence of the dependence of the entropy pro-
duction and the power upon fluxes, gradients, and mate-
rial factors such as 

 

α

 

 and 

 

ε

 

.

In the following three sections, we shall formulate the ba-
sic assumptions underlying the model of the thermoelec-
tric effect (Section II), derive the form of the entropy
production rate (Section III), and identify dissipative and
reversible terms in the expression for the total power of
the thermoelectric process (Section IV). The structure of
the terms found in the entropy production rate and the to-
tal power lead us to the equality of the Seebeck coeffi-
cient and the Peltier factor. Finally, in Section V, we offer
a graphical interpretation of the thermoelectric phenome-
non based upon a simple differentiation between dissipa-
tive and non-dissipative parts of the coupled processes. A
summary concludes the paper.

 

II Assumptions

 

We base our reasoning on the standard form of the laws
used to model thermoelectricity. These are (1) the laws of
balance of entropy and of charge (or of number of parti-
cles of the charge carrier); (2) the law of balance of ener-
gy supplemented by the expression for the total energy
current in terms of the flows of entropy and charge; and
(3) the constitutive laws for the flows of charge and entro-
py suggested by experiments.

We shall write the equations for the purely one-dimen-
sional case with flows only in the axial direction of a rod
made of a conducting material. Furthermore, we shall
treat the steady-state case.

 

A. Laws of balance

 

The thermoelectric effect is the result of the coupled flow
of entropy and charge in a conducting material. There-
fore, we shall make use of the steady-state forms of the
laws of balance of entropy
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 and of charge:

 

(3)

(4)

 

π

 

S

 

 is the density of the entropy production rate, and 

 

x

 

 de-
notes the independent spatial variable.

∇ = − ∇µ εec T

j jS q=α

d j

dx
S

S= π

d j

dx
q = 0
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B. Energy

 

Energy is conserved, so the divergence of the total energy
flux density must be equal to zero:

 

(5)

 

The total energy current 

 

j

 

E

 

 can be split into two terms,
each arising from the transport of one of the basic quan-
tities (i.e., entropy and charge):

 

(6)

 

Here, 

 

T

 

 is the Kelvin temperature and 

 

µ

 

ec

 

 the electro-
chemical potential introduced above.
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C. Constitutive laws

 

There is one constitutive law for each of the fluxes of
charge and of entropy. If we allow for an electric current
through a thermoelectric generator, Eq. 1 is generalized
to:

 

(7)

 

σ

 

 is the electric conductivity of the material. There is a
combined thermo-electro-chemical potential (i.e., 

 

µ

 

tec

 

 =

 

µ

 

ec

 

 + 

 

ε

 

T

 

) that gives rise to the electric current. 

The second constitutive relation is a generalization of
Eq. 2. Allowing for a temperature gradient we have:

 

(8)

 

Here, 

 

k

 

S

 

 is the entropy conductivity of the material. Eq. 8
suggests that the entropy current consists of a non-dissi-
pative and a dissipative term. If Eq. 7 is inserted into
Eq. 8, the two laws may be summarized as follows:

 

(9)

 

Onsager’s relations assert that the matrix of coefficients
multiplying the gradients is symmetric. In our case this
means that we should expect the following relation to
hold:

 

(10)

 

This we would like to demonstrate in the following sec-
tions.

 

III Entropy production

 

As stated in the Introduction, we shall gain additional in-
formation on the material coefficients of the theory, i.e.,
the Seebeck coefficient and the Peltier factor, by consid-
ering the form of the terms in the equation for the entropy
production rate and for the power of the thermoelectric
process (for the latter, see Section IV).

We begin with the law of balance of energy in Eq. 5 and
insert Eq. 6. Taking into account the laws of balance of
entropy and charge, the density of the entropy production
rate is obtained:

 

(11)

 

The two terms on the right hand side represent the ther-
mal and the electric power of the processes, respectively.
Since these contain non-dissipative parts, only the sum of
the two terms can be equal to the entropy production rate.
By itself, a single term does not represent a part of the en-
tropy production rate. If we insert the constitutive laws of
Eq. 7 and Eq. 8, we see that

 

(12)

 

The first and the last of the terms are non-dissipative parts
of the thermal and the electric power, respectively. Since
they do not add to the production of entropy, their sum
must cancel in Eq. 12. This leads immediately to 

 

α

 

 = 

 

ε

 

(Eq. 10) and to

 

(13)

 

This is what we should have expected from our knowl-
edge of dissipation due to the conduction of entropy and
of charge.
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IV Power of thermoelectric processes

 

Take the case of thermoelectric power generation. A cur-
rent of entropy is established as a consequence of a tem-
perature difference. This leads to an electric and two dis-
sipative processes. The density of the power of the driv-
ing thermal process 

 

p

 

th

 

 is equal to

 

(14)

 

which can be expressed with the help of Eq. 7 and Eq. 8:
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(15)

 

In this expression, we can interpret all three terms on the
right hand side. The third is the dissipation rate as a con-
sequence of thermal conduction. The first must represent
the dissipation rate due to charge conduction, whereas the
second determines the non-dissipative power of the elec-
tric process driven by a part of the input power.
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 The sum
of the three terms must obviously equal the total power of
the thermoelectric process. Again, these identifications
lead us to conclude that the Seebeck coefficient and the
Peltier factor should be equal.

 

V Thermo-electric potential and 
electro-thermal transport

 

The results of the previous two sections rest on the differ-
entiation between irreversible and non-dissipative parts
of the thermoelectric effect. They may be summarized in
the following graphical interpretation of this phenome-
non.

1. The transports of charge and of entropy are cou-
pled according to Eq. 2. This leads to a non-dissi-
pative part of the total entropy current (the dissipa-
tive part is due to conduction):

 

(16)

 

2. It is this coupling, i.e., the non-dissipative entropy
transport, which leads to the thermo-electric poten-
tial (or rather, to its gradient):

 

(17)

 

The assertion that 2 follows from 1 is equivalent to saying
that the energy released as a consequence of the non-dis-
sipative entropy transport is equal to the energy made
available to the thermoelectric process:

 

(18)

 

Once more this results in the equality of the Seebeck co-
efficient and the Peltier factor.

The steps and the reasoning presented here may be taken
as a simple explanation of thermoelectricity.

 

VI Summary

 

If we accept some strong physical reasoning with regard
to the nature of the dissipative processes inherent in ther-
moelectricity, we can apply the same equations used to
model the phenomena to demonstrate the equality of the
Seebeck coefficient and the Peltier factor. 

The argument starts with the assumption that the only ir-
reversibilities are the result of conduction of entropy and
charge. As a consequence, we reason that the coupling of
entropy currents to currents of electric charge causes a
non-conductive flow of entropy (Eq. 2 and Eq. 16) which
is non-dissipative; it leads to the reversible effect of a
thermoelectric device. Since we know the expressions for
the irreversibilities due to the conduction of charge and
entropy, we have prior knowledge of the form of the en-
tropy production rate: it should be as presented in Eq. 13.
This immediately leads to the desired result.

Should we accept such reasoning? There are compelling
reasons for doing this. The alternative would be to appeal
to the Onsager relations. Simply appealing to someone’s
result without the accompanying proof is probably worth
less to the learner than reasoning based on assumptions
that can be motivated and whose consequences can be in-
spected. Moreover, the derivation of Onsager’s reciproci-
ty relations suffers from limitations.
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 Therefore, they are
usually taken for granted at the macroscopic level. A gen-
eral proof in macroscopic physics is still missing.
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σ
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ε
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α
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2
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