
               
CHAPTER 5

Numerical Methods for 
Differential Equations

In this chapter we will discuss a few of the many numerical methods which can be used to solve
initial value problems and one-dimensional boundary value problems. Today, users would only
rarely develop or program algorithms themselves. Nonetheless, one must know what the algo-
rithms and properties of various groups of methods are. 

There are two groups of methods, namely single-step or multi-step methods. These are again
divided into the sub-groups of explicit or implicit methods. The simplest of these will be men-
tioned here. One of their most important properties, their stability, will be investigated in an ex-
emplary manner. The same will be done with the problem of numerical accuracy.

The discussion and the examples given are usually limited to a single differential equation of
the general form we have derived before in Chapter 3:

(1)

The independent variable here is x, which is usually equivalent to time in dynamical systems.
Y represents the analytical solution of the differential equation, while y stands for the numerical
approximation. The information gained through investigation of simple methods and examples
can be used for other cases. 

After revisiting some practical problems of numerical methods by playing with models intro-
duced in Chapter 2, we will investigate the two most important properties of numerical algo-
rithms—stability and accuracy. This is done most easily in the context of the simplest numerical
method, i.e., the explicit Euler method (Section 5.2). The problem of solving stiff differential
equations is addressed in the following section (Section 5.3), again by using Euler’s method.
Here we learn about the utility of implicit methods. Higher order methods are introduced in
Section 5.4, and algorithms for step-size control are briefly mentioned in Section 5.5. Finally,
in Section 5.6, we shall briefly turn to numerical methods for (one-dimensional) spatial sys-
tems, i.e., finite element methods.
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An important point about numerical approximations of models of dynamical systems is often
forgotten: They discretize our continuous differential equations. A numerical method applied
to a continuous differential equation is a new model in its own right. You can demonstrate this
for the logistic model of Section 2.2 (see also the CBT unit, Section 2.1.4; increase the step size
of the numerical approximation and see what happens). In some cases the discrete model has
nothing to do with the original system: it can show solutions which are not possible in the con-
tinuous model. Therefore, one of the important questions of numerical approximation theory is
to what extent numerical models are similar to their original system of equations.

5.1 PRACTICAL PROBLEMS WITH NUMERICAL SOLUTIONS

In Chapter 2 we already encountered examples of dynamical models exhibiting numerical dif-
ficulties. We shall revisit three of these before we turn to a discussion of numerical methods
used to deal with simple and complex cases. Here, the models will be presented using Simulink
as the tool for modeling and simulation.

5.1.1 Three Communicating Tanks

The model of three communicating tanks grew out of the desire to model two tanks discharging
into pipes converging at a node (Fig. 1). It turns out that this system cannot be modeled directly
with most tools for dynamical systems: it leads to a closed loop which cannot be solved by most
algorithms implemented in the modeling programs.

Figure 1: Two containers are connected by hoses to a third tank having a smaller cross section. From 
there the fluid drains through a short third pipe. The smaller tank replaces the node made up 
of two hoses converging into a single one.

Node
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Therefore, we decided to model the node as a true tank (Fig. 2). This results in a system which
can easily be represented in simple tools such as Stella or Madonna. The numerical problem
arises when we make the third tank increasingly smaller to represent a node in a system of
pipes. It turns out that to simulate the equations with the help of fixed step numerical methods
requires a time step so small that the solution procedure may become impractical.

Figure 2: Simulink diagram of model of three communicating tanks. V1…V3 represent the stocks,
while the quantities denoted by IV are the fluxes with respect to each of the tanks. In the
simulation the cross section of the third tank is 5 to 10 times smaller than that of the other
tanks. Units are arbitrary.

Assume that the first two tanks are filled while the third—representing the node—is empty at
the beginning. If the capacitance of this last tank is made smaller and smaller, we obtain a model
representing two tanks with the hoses joined at a node. In the model, the level of the fluid in the
third tank rises very rapidly (Fig. 2). This gives rise to a model having time constants of strongly
differing size: two large ones and one very small one.

Standard numerical methods—such as the ones built into Stella— have to use constant time
steps smaller than the time in which the level in the “node” rises, which may be very small. This
leads to an unacceptably large number of time steps over the entire interval of interest, and
therefore to unacceptably long integration times. It is most interesting to see that the simple idea
of integrating with a small time step for the short duration of the first rise, stopping the simula-
tion and resuming it with new initial values and a new and larger time step, does not yield re-
sults. The simulation becomes just as unstable as if we had started the computation with a large
time step to begin with. The information regarding the fast change is “wired” into the differen-
tial equations. Standard methods therefore fail.
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A simulation carried out with one of the so-called “stiff” solvers in Simulink (or in Madonna)
will yield good results very quickly. We shall learn in Section 5.3 what stiff differential equa-
tions and solvers are all about.

5.1.2 Two Blocks and Two Springs

You can build a model of two blocks oscillating on a horizontal surface. The first block is at-
tached to a wall by a spring, and a second spring connects the first block to the second body.
Here a result is presented in the form of a Simulink model (Fig. 3). The second block experi-
ences friction, the other is driven by a harmonic force. If both springs are soft, the system is well
behaved. There are two oscillatory frequencies of similar magnitude, making it easy for a sim-
ple solver such as the standard Runge-Kutta method of fourth order to give us acceptably accu-
rate solutions with reasonable time steps.

If the spring connecting the two blocks is made very stiff, the behavior of the system changes.
The second block should move with the first one as if it were connected by a rigid rod. On the
other hand, the stiff spring leads to fast oscillations. As a result the second block performs fast
damped oscillations around an average distance to the larger first block before it begins to move
in tandem with the other body (Fig. 3). In the end, it is as if we had a single body connected to
a single soft spring oscillating back and forth with a low frequency. The frequency is calculated
from the total mass of the bodies and the spring constant of the remaining spring.

Figure 3: Simulink diagram of model of two blocks and two springs. Note the stocks for the momenta
of the bodies, and the integrators for the positions. The results of the simulation are shown
on the right as a phase plot. The spring constants are 20 and 20,000, respectively. Units are
arbitrary. If the second spring is made very stiff, the numerical solution becomes difficult to
compute for standard methods.
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As in the case of the three communicating fluid tanks, the model becomes stiff if the value of
the second spring constant is increased. Now we understand the term “stiff.” It originates in me-
chanical systems where connecting springs are made stiff to represent rigid rods. Standard nu-
merical methods cannot properly deal with such systems, and trying to circumvent the problem
by restarting the integration with a larger time step after the fast changes have died down does
not work. Only solvers suited for stiff models are practical in this case.

5.1.3 Conduction of Heat in a Long Bar

Let us have a brief look at an entirely different type of model. In Section 2.3 we created the
model representing the flow of heat through a long conducting bar. There you can observe a
possibly surprising feature of instability. For a given number of elements into which the bar has
been divided, the solution using Euler’s method becomes unstable for a certain time step (Fig.
4). We might expect that for double the number of elements, i.e., for a finer spatial approxima-
tion, we would be rewarded with a larger time step for which the simulation remains stable. The
opposite is true. Instead of a larger time step, we need a smaller one. In fact, numerical experi-
ments show that for twice the number of spatial elements we have to reduce the time step by a
factor of four.

Figure 4: Solution of “finite element” model having five elements in a copper bar of 1 m length. Both
solutions have been computed with Euler’s method. In the first, a time step of 100 s has been
used, in the second the time step was 200 s. We see the typical appearance of unstable solu-
tions.

From a physical viewpoint the result is not that surprising. Having elements only half as long
makes their thermal inertia smaller by a factor of two. In addition, the thermal resistance will
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be halved as well. Together these factors lead to time constants in the model which are reduced
by a factor of four.

In summary, solving model equations numerically can pose moderate to grave problems. In
simple cases, we check the accuracy of solutions by decreasing the time step and making sure
that the solutions do not vary any longer—at least not noticeably. In difficult cases such as stiff
systems of equations we have to make sure we use appropriate algorithms which include strong
stability and automatic step-size control. All in all, numerical analysis of dynamical (and spa-
tial) systems is a practical art.

5.2 STABILITY AND ACCURACY OF NUMERICAL SOLUTIONS

Stability and accuracy are two of the most important practical features of numerical methods
for differential equations. The problems posed by these features can be investigated by using
just a single numerical method—Euler’s method. It is simple and allows for simple theoretical
investigations of the phenomena of approximation of initial value problems. Here we will
present the method, discuss its stability properties and its error behavior. The latter leads to the
idea of extrapolation which can be used as an effective step-size control algorithm.

In the following we are going to use Euler’s method mostly on the single linear homogenous
initial value problem

(2)

Here, λ is a real valued number. If λ < 0, the differential equation Eq. (2) is said to be stable,
for λ > 0 it is unstable. (It is important to distinguish the stability of the analytical solution of
an initial value problem from the stability properties of a numerical approximation.)

5.2.1 The Explicit Euler Method

The simplest example of a numerical method for initial value problems is the explicit Euler
method. The differential quotient in Eq. (1) is replaced by the difference quotient (where ∆x =
h is used) and the function F by its value at the beginning of the (time) step: 

(3)

In just one step a new numerical value yi+1 is calculated at xi+1 = xi + h. It is obtained from the
previously calculated value yi at xi (see Fig. 5).

dY

dt
Y Y= ( ) =λ    ,     0 1

y y hF x yi i i i+ = + ( )1 ,
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Figure 5: Representation of the axis of the independent variable (x). In a single step method, an
approximate solution is calculated at a point on the basis of the already known solution at
the previous point. All quantities necessary for computation are known at xi; h is the step
length.

Because the function F is taken at the previous position, it is known explicitly. Even when the
differential equation is non-linear (when F(x,Y) is a non-linear function) the Euler approxima-
tion is linear and explicit in yi+1 and therefore easy to solve. Graphically, the Euler method cor-
responds to a continuous creation of tangents to the analytic solution curve with an initial value
of yi (see Fig. 6; the true and the Euler solution for Eq. (2) with λ = –1 and h = 0.5 are shown
there). F(xi,yi) is equivalent to the tangent to the curve at the corresponding point. It is clearly
visible how the numerical solution deviates from the true solution. One can imagine that this
deviation must be smaller if the step h were made smaller. The behavior of the approximation
error will be investigated more closely in Section 5.2.3. 

Figure 6: Comparison of the Euler solution of the initial value problem (2) with the analytical solu-
tion.

5.2.2 Stability of the Euler Method

Two essential features of numerical methods for initial value problems must be distinguished
from each other. These are the error and stability properties. The second point will be dealt with
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here in an exemplary manner by comparing the explicit and implicit Euler methods (the implicit
method will be discussed below in Section 5.3.2). The knowledge gained can, in many cases,
be transferred directly to higher order methods. 

Fig. 7 demonstrates the stability problem of the explicit Euler method for the simple example
of Eq. (2). Eq. (2) with λ = –1 was solved using a step length of h = 2.5. The numerical solution
has absolutely nothing to do with the true solution which is shown in the diagram as well. It
oscillates and increases exponentially, i.e., it “explodes.” One says that it has become unstable.
If the example is solved using various step lengths, one sees that the method oscillates if h >
1.0, and becomes unstable when h > 2.0. 

Figure 7: Numerically unstable solution of the differential equation (9) using the Euler method. Insta-
bility results from steps which are too large and as a result of the features of the explicit
Euler method. 

We can calculate the numerical solution of the test example in Eq. (2) formally. If Eq. (2) is
solved with Euler’s method, yi+1 is obtained from yi as follows:

(4)

Starting with an initial value yo, the numerical value yN after N steps is

(5)

We see that the numerical values increase for λ = –1 if h > 2. In this case the absolute value of
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the factor |1+λh| is larger than 1. Remember that for negative values of λ the analytical solution
decreases exponentially.

5.2.3 Accuracy of Numerical Approximations with Euler’s Method

Numerical error behavior, i.e. the properties of the numerical approximation, of a method is,
along with stability, one of its most important aspects.The approximation error should be kept
as small as possible while, at the same time, the effort calculating a solution should not be un-
acceptably large. Methods of different orders and different types have different error behavior
(see Section 5.4). Their efficiency, meaning the number of calculations needed for a given ac-
curacy, is usually closely connected to the order. Nevertheless, methods of the same order can
exhibit rather different properties. 

Knowledge of the error properties is especially important for controlling the step-lengths during
the integration (see Section 5.2.5 and Section 5.5). The efficiency of the step-size control mech-
anism of a method is decisive for the number of calculations which are needed for simulating a
model. 

As usual, we choose the simplest method to learn about the behavior of numerical methods. In
investigating the error behavior of methods for initial value problems the question arises of how
the approximation error over a fixed integration interval depends upon the length h of the steps
used. The error per step is called local error, whereas the error at the end of a fixed interval is
called global error. We use these informal definitions:

The local error is the result of a computation of a single step starting with an
accurate initial value. The global error, on the other hand, is the result of the
propagation of the errors occurring at every step.

Table 1 shows the local error of the Euler method for dY/dx = – Y for just one step of length h
with a starting value Yo = 1 at x = 0. We see that the difference between the true and the numer-
ical solutions is smaller by a factor of 4 when the integration step is halved. This indicates that
the local approximation error of the Euler method reduces quadratically with h. A little theory
confirms this experimental result. A true value of the solution Y of the differential equation dY/
dx = F(x,Y) at x = h is obtained when F(x,Y) is integrated from x = 0 to x = h: 

(6)

The function F(x,Y) can be expanded at x = 0 in a Taylor’s series. If the result is inserted into
the previous relationship Eq. (6), we obtain:

Y h Y F x Y dxo

h

( ) = + ( )∫ ,
0
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If the numerical solution y(h) = Yo + hF(xo) is subtracted, we obtain:

(7)

In Table 1 the error of the Euler method and the first term on the right hand side of Eq. (7) are
given for various step-lengths. The local error not only reduces with the square of h, but, for our
example, it agrees very well with the first term of the theoretical result in Eq. (7). This only
works here because the higher order terms in Eq. (7), i.e. the higher order derivatives of F, are
relatively small. Unfortunately, one cannot generally use the first term of this Taylor-series form
of the approximation as a good error estimate.

Table 1: Local error of the approximate solution with Euler’s method for dY/dx = – Y, Yo = 1.

Formally, one expresses the result obtained for the local error as follows. If Y(h) – y(h) is the
local error, we say that

(8)

h Y(h) – y(h) h2dF/dx/2

0.2 1.87E–02 2.00E–02

0.1 4.84E–03 5.00E–03

0.05 1.23E–03 1.25E–03

0.025 3.10E–04 3.13E–04

0.0125 7.78E–05 7.81E–05

0.00625 1.95E–05 1.95E–05

0.003125 4.88E–06 4.88E–06
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C2 is a factor dependent upon the method, and we use O(h3) to denote the terms of order 3 and
higher.

The global error, i.e., the error which results in several steps over a fixed interval, depends upon
the local error (error per step) as well as the number of steps in the entire interval of integration
xN - xo (here N is the number of steps of length h = (xN – xo) / N). We assume that the error per
step for steps of the same length, is always about the same. Thus the global error is N times as
large as the local error. Because of this, the global error decreases with a power of h which is
p – 1, where p is the order of the single-step error. In our case

(9)

Again, C1 is a factor dependent upon the method, and O(h2) denotes the terms of higher order.
The results in Table 2 confirm this: if the integration step is halved, the error decreases by a fac-
tor of two. 

Table 2: Global error of Euler’s method for the simple equation dY/dx = – Y (with an initial value Yo 
= 1 at x = 0), at x = 1.

5.2.4 Extrapolation of Euler’s Method

The observation that the global error of the Euler method decreases linearly with the step-
length, allows for error estimates with a simultaneous correction of the numerical result (ex-
trapolation). If the numerical result is calculated twice from the starting point until the end of
the interval, first with N steps and again with twice the number of steps (2N), the error in the
second result will be about half of what it is in the first. The difference between the two numer-
ical values is an approximation of the error. If the leading term Ch is taken as the error according
to Eq. (9), the results of the two solutions are

Steps yN Y(1) – y(1)

5 0.327680 0.040199

10 0.348678 0.019201

20 0.358486 0.009394

40 0.363232 0.004647

80 0.365568 0.002311

160 0.366727 0.001153

Y x y C h O hN N( ) − = + ( )1
2
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If C and the interval of integration are eliminated, we get the error of the better solution (the
one calculated with 2N steps):

(10)

This simply means that the error of the numerical method, which is calculated with 2N steps, is
estimated by the difference of the two approximate values y2N and yN. Because we now have an
error estimate, we can correct the better solution and obtain an even better numerical approxi-
mation. In Table 3, the numerical solutions of our test example for step numbers increasing by
a factor of two are calculated. Column 3 shows the true error (remember that the true solution
in Column 1 is known). Column 4 shows the differences of consecutive solutions which repre-
sent an estimate of the approximation error of Euler method. This error is used to calculate an
extrapolated value (Column 5). The extrapolated value is indeed much better than the one ob-
tained by Euler’s method. 

Table 3: Error estimate and first extrapolation at x = 1 of the solution of dY/dx = – Y, Yo = 1, using 
Euler’s method.

If one observes the form of the error of Euler’s method, i.e., Eq. (9), one sees that the leading
error term is missing in the series of extrapolated solutions in Column 5 of Table 3. The values
of this series should converge more quickly. That means that it converges with a higher power

Steps yN Y(1) – yN y2N – yN y(extrap.)

5 0.327680 0.040199

10 0.348678 0.019201 0.020998 0.369676

20 0.358486 0.009394 0.009808 0.368294

40 0.363232 0.004647 0.004746 0.367978

80 0.365568 0.002311 0.002336 0.367904

160 0.366727 0.001153 0.001159 0.367886
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x x
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of the step length h. Indeed, Column 4 in Table 4 corresponds to a solution of a second order
method. In such a method, the error resulting from decreasing the step by a factor of two, is
smaller by a factor of 4. The method of extrapolation described above can now be used for this
column of numerical values. The difference between two consecutive values is approximately
three times the approximation error of the more exact solution. Using this estimate of the error,
a further extrapolation step can be carried out. This is done in Column 6 of Table 4. Theoreti-
cally, this method can be continued indefinitely but it becomes impractical because of round off
errors.

Error estimation tends to be a difficult subject. In particular, trying to determine global errors is
not easy. The method with which an initial value problem is calculated twice using different
step lengths, and to compare the results, is arguably one of the simplest and fastest. In combi-
nation with extrapolation, it is even more attractive. This does not mean, though, that it is the
only possibility for error estimation (see Section 5.5)

Table 4: Continued extrapolation of the solution with Euler’s method of dY/dx = – Y at x = 1 (with 
initial value Yo = 1 at x = 0).

5.2.5 Automatic Step-Size Control

Automatic step-size control can be very important for making numerical algorithms practical.
Even in non-stiff cases where the standard methods built into most modeling tools suffice, the
numerical solution can become impractical to carry out if the smallest time step necessary in
the integration has to be used for the entire interval.

Naturally, automatic time-step control necessitates automatic error estimates. The size of a time
step has to be small enough to ensure that the local error made in this step is below a chosen
tolerance.

Having used extrapolation on Euler’s method, we can devise a simple algorithm for error esti-

Steps yN y2N – y y*(extrap.) y*2N – y* y(extrap.)

5 0.327680

10 0.348678 0.020998 0.369676

20 0.358486 0.009808 0.368294 – 0.001382 0.36783333

40 0.363232 0.004746 0.367978 – 0.000316 0.36787267

80 0.365568 0.002336 0.367904 – 0.000074 0.36787933
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mation and step-size control. Starting at a point xi, a single step of length h is carried out to xi+1,
yielding a result y1. Then a second solution at xi+1 is calculated using two steps of length h/2
resulting in an approximation y2. The error of the second solution is now estimated according
to Eq. (10):

(11)

eabs is the absolute error of y2. If we want to base the step size control on the relative error in-
stead, we have to calculate

(12)

Now the estimate of the error is compared to an absolute or relative tolerance tol. Since Euler’s
method is a method of first order (the local error decreases quadratically with h), we can calcu-
late an optimal step-size by

(13)

If the results calculated so far are larger than the tolerance, we discard them and recalculate y1
and y2 with hopt. Otherwise we accept them and use hopt as our new step size. Naturally we
could also extrapolate the solution and get

(14)

As we have seen before, this value is much more accurate than y2. An estimate of the local error
of this solution could be obtained as well.

What we have discussed here is a strongly simplified version of a step-size control algorithm.
In general, much more care has to be exercised, mixed criteria have to be used, and safety fac-
tors have to be built into the algorithm. We will discuss these points below in Section 5.5.

5.3 STIFF DIFFERENTIAL EQUATIONS

Stiff differential equations pose some of the biggest challenges to numerical methods for initial
value problems. As we have seen in our examples, standard methods such as the explicit Euler
Method and its higher order cousins are inherently unstable. Codes trying to adjust the time step
to larger values in smooth regions of the solutions become immediately unstable and fail. Stiff

e y yabs = −2 1

e
y y

yrel =
−2 1

2

h h
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eopt = 





1 2

ŷ y y2 2 12= −
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problems therefore call for different numerical methods. As we shall see, a simple change to
Euler’s method—namely to an implicit version—yields an algorithm which is very stable even
for the most difficult dynamical systems. Higher order versions of such implicit codes can be
very stable and efficient.

5.3.1 What Are Stiff Differential Equations?

There is no unique or simple answer to the question of what stiffness is all about. We have seen
that a feature which comes up again and again—but not necessarily all the time—is the occur-
rence of fast and slow components in the same system. Examples are chemical reactions where
some steps run very fast while others are slow. In oscillatory cases, stiffness may arise from the
mixing of fast and slow oscillations.

Yet these observations are not general enough to make for a good definition. Stiffness may de-
pend on the systems—the equations—themselves, or on the particular initial values, or on the
interval of integration.

Therefore, it is best to stay with a simple and practical “definition” of stiff differential equa-
tions. Systems are stiff if explicit numerical methods fail. Put differently, stiff problems are
those for which implicit methods work very well and efficiently.

5.3.2 The Implicit Euler Method

The Euler method discussed until now was the explicit method. The unknown numerical quan-
tity yi+1, i.e., the components of the corresponding vector, can be calculated by an explicit equa-
tion. This means that the equations of a system are all individually and directly solvable using
the components yi+1 at the new point xi+1.

There are numerical methods, though, which do not allow for such direct solutions. The sim-
plest example is, again, the Euler method. This time it is the implicit method:

(15)

The only important difference to the explicit Euler method is this. The right hand side of the
system of differential equations (Eq. (1)) is computed at the new point xi+1 (see Fig. 8). A single
linear differential equation such as Eq. (2) can still be solved explicitly. However, systems of
linear equations and nonlinear equations lead to implicit systems of algebraic equations. A sys-
tem of nonlinear IVPs necessarily leads to a system of nonlinear algebraic equations for the
components yi+1. We normally use the Newton-Raphson method for solving systems of nonlin-
ear algebraic equations. The numerical effort necessary for solving such systems of equations

y y hF x yi i i i+ + += + ( )1 1 1,
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is much larger than for explicit methods. Therefore, introducing implicit methods appears to be
impractical. We shall see, however, that implicit methods have desirable stability characteristics
for some very difficult problems which are lacking in explicit algorithms. This may make the
method efficient even though the solution algorithms are more complex.

Figure 8: Representation of the axis of the independent variable for the implicit Euler method.

5.3.3 The Stability of the Implicit Euler Method

The implicit Euler method is very different from the explicit one in its stability properties. In
solving the same example Eq. (2), one sees that the method stays stable for any step length, even
large ones (Fig. 9). Note, however, that the accuracy of the solution may be bad if we choose a
large step h. This simple example shows that stable solutions may not have to be accurate, but
accurate solutions will be stable. Therefore we always have to satisfy stability before accuracy.

Figure 9: The implicit Euler method gives a stable solution for steps which even may be too large for
an accurate solution. The size of the step only effects the accuracy of the result. 
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5.4  Some Examples of Numerical Methods
Again we can calculate the numerical solution of Eq. (2) by hand. In the case of the implicit
Euler method, the corresponding solution is:

(16)

After N steps starting with an initial value yo we have

(17)

For negative values of λ, the numerical solution y approaches zero independent of the value of
h, as should be expected of the exponentially decreasing analytical solution.

The stability behavior which we have witnessed in the case of the explicit and implicit Euler
methods can more or less be transferred to methods of higher order. Explicit methods always
have a limited stable range for the integration step h. Outside of this range, every numerical so-
lution is unstable. This is true for single-step as well as multi-step methods (including predictor-
corrector-methods, see Section 5.4). Collocation methods and their implicit Runge-Kutta coun-
terparts are strongly stable for any value of h.

Combined with an efficient step-size control mechanism which allows the step size to be ad-
justed according to accuracy requirements (rather than being limited by stability), the stability
of implicit methods makes them strong candidates for systems of stiff differential equations.

5.4 SOME EXAMPLES OF NUMERICAL METHODS

So far we have discussed the most relevant features of numerical methods for Euler’s scheme
only. Now we will turn to some of the many numerical algorithms known today. Among these
are explicit and implicit Runge-Kutta methods (collocation methods) which are single-step al-
gorithms, and so-called multi-step methods. Again, stability and accuracy are the main proper-
ties we are interested in. As with Euler’s method, explicit codes have strongly limited stability
features, while implicit schemes are inherently stable. Later in Section 5.5 we shall discuss er-
ror estimation and step-size control for some of the examples.

5.4.1 Runge Kutta Methods

A simple second order method can be constructed as follows. The new value yi+1 is calculated
with the help of the function values Fi and F*i+1. The value of the function F at xi+1 is obtained
with the help of the value of y*i+1 which is calculated first by using an Euler step:

y h yi i+ −( ) =1 1 λ
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(18)

This algorithm is called the Heun method. It is an explicit single step method, just like the ex-
plicit Euler method, but more accurate. While the Euler method is a first order method, Heun’s
algorithm is of the second order (sometimes called two-stage; the global error is of second order
as we shall see in Section 5.4.4). Thus, more calculations per step are needed. In practice, the
question arises of the relationship between accuracy and the amount of computational work,
i.e., the efficiency of numerical methods (Section 5.4.5).

Both of the methods described here (Euler and Heun) are examples of a large class called ex-
plicit Runge-Kutta methods (ERK). There are numerous ERK methods of various orders. They
are certainly the most popular single step methods. Good and efficient ERKs have been de-
signed lately. 

A further method, the four-stage “Classic RK Method” of fourth order, found in almost every
program for dynamical systems, is still to be mentioned here: 

(19)

A general way of representing the Runge-Kutta methods has been established (Hairer, Norsett,
Wanner, Solving Ordinary Differential Equations I, p.132-133):

(20)
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5.4  Some Examples of Numerical Methods
In general, the methods are called s-stage methods. The coefficients which appear in the method
are shown in a pattern called the matrix of coefficients (Table 5).

Table 5: Matrix of coefficients of explicit Runge-Kutta (ERK) methods.

The three single step methods mentioned here—Euler’s method, Heun and the Classic Runge
Kutta algorithm—are neither the only nor the best, but they are relatively simple, very well
known and often used (these are the three methods which are found in the Stella program). In
more advanced codes, however, other methods are used which include error estimation and
step-length control. The differences between the methods, especially their error orders and sta-
bility properties, will become clearer in Section 5.4.4.

5.4.2 Collocation Methods (Implicit Runge-Kutta Methods)

An important class of implicit single-step methods are the collocation methods. The implicit
Euler method is the simplest method in this class. Because they are of very general form, they
are interesting for both practice and theory (they have become important in finite element meth-
ods as well). They possess excellent stability properties and exhibit what is known as super con-
vergence, making them very accurate (Section 5.4.4).

In collocation methods, as in general finite element methods, the solution is approximated by a
simple function, often a polynomial of a certain order n:

(21)

The unknown coefficients are determined as follows. The approximation (21) is introduced into
the differential equations and the residuals (the error incurred because of the approximation) is
set equal to zero at n selected points in the interval of integration. In other words, we satisfy the
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differential equations with the approximation introduced at n distinct points—the collocation
points—in the interval [xi,xi+1]:

(22)

Different collocation methods are distinguished by different choices of the collocation points
(Fig. 10). If xi+1 is included but xi is not, we obtain the most stable group in the class of collo-
cation methods (the implicit Euler method is an example in this group).

Figure 10: In the collocation method, the residual resulting from introducing the approximation (21)
in the differential equation is set equal to zero at selected points in the interval of length h.
The end points xi and xi+1 may be collocation points. If the so-called Radau-Points are
used, xi+1 is included, but xi is not.

There are n collocation points xk, k = 1…n, in the integration interval [xi,xi+1] (see Fig. 10). To
determine the n+1 coefficient dj in Eq. (21), the initial value yi and n collocation equations (22)
are needed. Eq. (21) allows interpolation of the desired solution in an interval after the coeffi-
cients have been determined.

The choice of collocation points is decisive for the accuracy and stability of the method. Inves-
tigations have shown that the Gauss-, Lobatto-, and Radau points known from numerical inte-
gration, are the most appropriate because the approximation error is of especially high order
(superconvergence, Section 5.4.4). For the problem of stiff differential equations, the Radau
collocation method has proven to be the most useful because of its strong stability properties
(the implicit Euler method is the Radau collocation method of the first order; in Fig. 10 the col-
location points for the Radau method of the third order are shown). As with all implicit meth-
ods, systems of nonlinear algebraic equations can result here. The large effort required for
solving these is considered worthwhile only when the methods have other important advantag-
es, such as strong stability.

To break the entire interval of integration down into small elements and approximate the solu-
tion by simple functions in each element, is called a finite element method (Section 5.6).
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x x
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5.4  Some Examples of Numerical Methods
5.4.3 Multi-step Methods

In so-called multi-step methods, a numerical approximation of a new value yi+1 at xi+1 can be
calculated by a combination of values of y and F at several previous points. A simple example
for such a method is the explicit mid-point rule

(23)

Here the value yi+1 is dependent upon the previously calculated numerical values yi–1 and yi at
the two points xi–1 and xi (see Fig. 11).

Figure 11: Shown here is the axis of the independent variables in a multi-step method (here a two-step
method is shown). The approximate solution at point xi+1 is calculated on the basis of val-
ues at several previous points.

A further example of a third order multi-step method (which is called the explicit Adams meth-
od) is

(24)

Other combinations of values of y and F at previous points, lead to methods of different orders
which have different accuracy and stability properties.

Just as with single-step methods, we can design implicit algorithms for multi-step methods as
well. Here is just one example (an implicit Adams method):

(25)

Because of the large number of calculations needed for implicit methods, so called predictor
corrector methods are often used. The value of yi+1 is calculated first with the help of an explicit
Adams method (such as Eq. (24)), whereupon in Eq. (25) yi+1 can be explicitly calculated. Un-
fortunately, the strong stability properties, which are the reason implicit methods are so often
used, can be lost in this process.
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Multi-step methods usually possess high accuracy and may involve fewer computations than
single-step methods (such as ERK) of an equivalent order. On the other hand, they are not self-
starting. A multi-step code has to be combined with a single-step method to calculate the first
few numerical values necessary for a multi-step algorithm. Also, if variable steps have been
used to calculate the previous values, interpolation is needed to obtain values at fixed steps h
(note that the intervals between values used in a multi-step method have to be equidistant). This
may make the codes more complex and less efficient.

5.4.4 Stability and Accuracy of Higher Order Methods

Higher order methods are developed with the intention of decreasing the approximation error.
In practice, one attempts to find procedures for which the Taylor series development of the (lo-
cal) error contains terms of higher order only. As a consequence, the error should decrease
much faster than with a first order method (such as Euler’s method) if the integration step is
decreased. With a method of the 2nd order it would be expected that for example, when a step
is halved, the local error would decrease by a factor of 8 (third order). The global error, on the
other hand, would decrease by a factor of 4 (second order). In Table 6, the global approximation
errors of the Euler method, the Heun procedure and the classical Runge-Kutta method are pre-
sented. It is clear to see that the errors of the Euler method are proportional to h, while those of
the Heun method change quadratically with h, and those of the Runge-Kutta method change
with the fourth power of the step size. 

Table 6: Global error of the simplest three explicit single-step methods for dY/dx = – Y at x = 1(with 
initial value Yo = 1 at x = 0).

Quite often, but not always, an s-stage method has a global error of order s, while the local error
is of order s+1. There are exceptions, however. An example of an s-stage method having a glo-
bal error of order 2s–1 (at the end points xi+1, not in the intervals of length h, though) is the

Number of steps Euler Heun CRK-4

5 4.02E–02 –2.86E–03 –5.80E–06

10 1.92E–02 –6.62E–04 –3.33E–07

20 9.39E–03 –1.59E–04 –2.00E–08

40 4.65E–03 –3.90E–05 –1.22E–09

80 2.31E–03 –9.67E–05 –7.56E–11
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(implicit) Radau collocation method. Thus the 3-stage Radau method has a global error at the
ends of the integration steps which decreases with the 5th power of h. This feature of acceler-
ated convergence is called super-convergence.

Stability is again an altogether different issue. To put a complex story simply, explicit algo-
rithms have limited stability domains (the step h can be increased only up to a limited value),
while Radau collocation methods—including the implicit Euler method—have the strongest
stability properties. These latter methods are absolutely stable and strongly damp possible nu-
merically induced oscillations.

Let us consider the stability of the simplest ERK methods more closely. This will demonstrate
why the explicit Euler method behaves so badly for oscillatory problems where the classical 4-
stage Runge-Kutta method is quite appropriate in many cases.

We now have to relax the requirement that λ in our test example should be real. In a system of
(linear) differential equations 

(26)

showing oscillatory behavior, the eigenvalues of the matrix A are complex. We therefore con-
sider a test equation (as in Eq. (2)) having complex valued λ. As before, for the explicit Euler
method, we have Eq. (4):

This means that the absolute value of 1 + λh must be smaller than 1, i.e.,

(27)

This restricts λh to a circle of radius 1 centered at –1 in the complex plain (see Fig. 12). For an
undamped oscillation of a body hanging from a linear spring, the eigenvalues of the matrix A
are purely imaginary and so is λh (a negative real part appears if the oscillation is damped). In-
spection of Fig. 12 shows that imaginary λh do not lie within the domain of stability (the circle
mentioned before), independent of the value of h. This means that the Euler method cannot be
stable for such problems.

The stability domains of the Heun and classical Runge-Kutta methods, on the other hand, in-
clude part of the imaginary axis in Fig. 12. Apart from the larger stability domain, we expect
the classical ERK method to be all right on undamped oscillatory problems. This is what you
can try out in our simple practical applications presented and discussed in Chapter 2 of the CBT
materials. This means that we should turn to a higher order method for the numerical solution
as soon as we expect oscillatory behavior of the solution.
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Figure 12: Stability domains for explicit Euler (RK-1), Heun (RK-2) and classical Runge-Kutta (RK-
4) methods. If the complex valued number λh is within the shaded domain of a method, the
algorithm is stable.

5.4.5 Order and Efficiency

The order of a method, meaning the power upon which the global error is dependent, is often
but not always, equal to the number of steps or stages. The classical Runge-Kutta method is a
four-stage method (the vector F(x,Y) of the differential equation is calculated four times) and
has an error behavior of the fourth order. There are other methods, though, which display better
behavior than might be expected based upon their stage. Collocation methods (implicit Runge-
Kutta methods) which use the Lagrange-, Radau- and Lobatto points as collocation points are
of this type. The global approximation error of the Radau method of stage s has the error order
2s-1 at the end of each integration step (element) and the order s+1 within the elements. The 3-
stage collocation method shown in Fig. 10 (approximation with a polynomial of the third order)
therefore has a 5th order global error. 

The interesting thing about methods of a higher order is that they are generally more efficient
than methods of a lower order. By efficiency we mean the number of calculations necessary to
attain a determined accuracy of the result. Although the number of calculations necessary per
integration step increases with each additional stage, the errors become smaller much faster. In
theory, a method of stage s with an error order s, is more efficient the higher s is. The number
of calculations necessary is proportional to the number of steps N and to the stage s of the meth-
od. On the other hand, the error is inversely proportional to the power s, resulting in
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(28)

In a double logarithmic diagram, the error as a function of the effort decreases with a slope s.
The larger the error order is, the steeper it is. One must be careful with this statement, though,
because many practical factors can change the theoretical behavior in concrete problems. 

5.5 ERROR ESTIMATION AND AUTOMATIC STEP CONTROL

An important point in the execution of numerical solutions of initial value problems is automat-
ic step control. If the step-size is kept constant, h must assume the smallest value necessary for
the approximation in a range where the solution changes quickly. This also applies to areas of
integration intervals where the solution changes more slowly. This leads to an often excessive
number of calculations (not to mention the increase of rounding errors because of the many cal-
culations). 

An efficient algorithm needs an efficient automatic step control. This, in its turn, necessitates a
dependable error estimate. In Section 5.2.4 we have only discussed a single approach: extrap-
olation of Euler’s method. Now we are going to extend extrapolation to higher order methods.
Then we will introduce so called embedded methods in which an error estimate is built into a
Runge-Kutta algorithm. Examples of this are the Runge-Kutta-Merson, RK-Fehlberg and Dor-
mand-Prince methods. Finally we shall discuss a step control mechanism in more detail.

5.5.1 Extrapolation

As described in Section 5.2.4, two solutions are computed over an interval: one with a single
step of length h, the other having two steps of length h/2. Now, with a method having error order
p, the local error is of order p+1. A derivation similar to the one that led to Eq. (10) yields

which leads to the error estimate

(29)

Remember that this is the estimate for the local error. This is important for the step-size control

log( ) log( )error const s effort= −

Y y Ch

Y y C
h

p

p

− =

− = 





+

+
1

1

2

1

2
2

Y y
y y

p− = −
−2

2 1

2 1
Part II: Foundations of Modeling 189



Chapter 5: Numerical Methods for Differential Equations
idea discussed below. The extrapolated value for y2 is

(30)

5.5.2 Embedded Runge-Kutta Methods

There is an elegant method for error estimation which can be done in a single step. It is possible
to construct methods which not only compute the (single-step) solution y1 but also a second val-
ue  of higher order (usually p+1 if p is the order of the method itself). In explicit Runge-Kutta
methods this means that we construct an algorithm with coefficients from a matrix as in Table 7
with

(31)

(32)

which are of order p and q, respectively, where we usually have q = p+1. Note that the ki have
to be calculated only once.

Table 7: Matrix of coefficients of explicit Runge-Kutta (ERK) methods with embedded error esti-
mator.

The error is then estimated to be equal to the difference of the two expressions

(33)

and can be used in a step-size control algorithm just like an error obtained from an extrapolation
method.
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5.5.3 A Step Control Algorithm

If a method is of error order p, the local error is of order p+1. This means that if we compare
the error estimate err (obtained from Eq. (29) or Eq. (33)) to the specified tolerance tol, we
should adjust the integration step h to a new step length

(34)

As before in Section 5.2.5, this can be applied to either the absolute or the relative error. In the
latter case, err has to be divided by y1.

In Solving Ordinary Differential Equations I by Hairer, Norsett and Wanner (p. 167), a descrip-
tion can be found how the algorithm (34) can be made safer. First, (34) is multiplied by a safety
factor f (such as 0.9 or 0.8), and factors fmin and fmax are introduced so as not to let the step
change too fast. Then we can determine the new step from

(35)

In practice, a control method should be tried out for each numerical algorithm on some impor-
tant examples before it is used. Good professional codes contain quite some additional details
derived from long experience.

5.6 FINITE ELEMENT METHODS FOR ONE DIMENSIONAL 
BOUNDARY VALUE PROBLEMS

One-dimensional spatial problems lead to ordinary differential equation just like initial value
problems in dynamical systems (Eq. (47) of Chapter 3). Again, nature usually offers the laws
in the form of systems of first order equations:

(36)

The only—yet very important—difference to initial value problems is this: instead of initial val-
ues at one end of the interval of integration, commonly at t = 0, we now have boundary values
at both ends of the interval (Fig. 13): we speak of two point boundary value problems. If there
are n differential equations, there may be nl boundary conditions at the left end xo, and nr = n –
nl boundary conditions at the right end xend of the interval of integration.
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Figure 13: The range of the spatial independent variable x. The differential equations and the solutions
are defined on the interval from xo to xend. There are boundary values at both ends.

Having boundary conditions at both ends makes it impossible to solve the equations explicitly
by starting at one end. (Actually, there are ways around this—exploited in so-called shooting
methods—where one assumes values of the unknown functions at one end, integrates toward
the other end, end verifies if the boundary conditions there are satisfied; if not, the guessed
boundary values are adjusted, and the integration is repeated.) We always end up with an im-
plicit set of equations made up of boundary value equations at one end, difference or finite el-
ement equations replacing the differential equations, and boundary equations at the other end.
This requires solvers for (large) systems of possibly nonlinear equations.

If we have nonlinear differential equations of the general type as in Eq. (36), we also end up
with nonlinear replacements after the approximation. Therefore, we either have to linearize the
nonlinear approximation equations, or linearize the differential equations (and boundary equa-
tions). Let us assume we do the latter. We end up with

(37)

and appropriate boundary value equations. Here, A is an nxn matrix, and B is an n column vec-
tor. The n vector Y represents the corrections to a guess of the solution (we need starting values
for solving nonlinear equations by Newton-Raphson). Adding Y to the guess gives an improved
solutions which may be used for a further round of integration for an even better approximation.
For our following discussion it does not matter if we are starting with linear equations or if we
have linearized differential equations. Therefore it is easiest to think in terms of linear boundary
value problems from the start.

5.6.1 Collocation Finite Element Methods

In finite element approximations of (one-dimensional) boundary value problems one divides
the interval of definition into m sections called elements (Fig. 14). In each element, the un-

xo xend

Left Boudary
Conditions

Right Boudary
Conditions

d

dx
x

Y
A Y B= ( ) +
Modeling of Uniform Dynamical Systems192



5.6  Finite Element Methods for One Dimensional Boundary Value Problems
known functions Yi, i = 1…n, are approximated by a usually quite simple function as in Eq. (21).
Common examples of such functions are splines or polynomials. We shall discuss the use of
polynomials here, because the resulting approximations are simple to formulate:

(38)

The polynomial has a certain order r for a given method, and the task is to find r+1 coefficients
in each of the m elements. This results in (r+1)·m·n unknowns. Usually, we use r approxima-
tions to the n differential equations in m intervals, leading to r·m·n equations. These are aug-
mented by n boundary conditions and (m–1)n conditions joining the end of the approximation
(38) in one element to the beginning in the next element (continuity of the solution). This leads
to a total of (r+1)m·n equations. However, we can satisfy the continuity condition by joining the
piecewise functions at the end of the elements, leading to a reduced set of (m·r +1)·n unknowns
and equations.

Figure 14: The range of the spatial independent variable x is divided into m elements. In each element
the unknowns Y are approximated by a simple function.

5.6.2 The System of Linear Equations

To be concrete let us discuss the case of two linear differential equations (with constant coeffi-
cients) of the form found in Eq. (37):

(39)

which makes n = 2, supplemented by one boundary condition at both the left and right sides of
the interval of definition. Furthermore, we assume four elements (m = 4), and a polynomial ap-
proximation of the second order (r = 2). According to what we just said, we should end up with
(4·2+1)·2 = 18 linear equations to be solved. What is the structure of this system?
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There are several preparatory steps that have to be taken before we arrive at a suitable form of
the equations. First, we introduce a new variable 0 ≤ ξ ≤ 1 on every interval (element) and re-
place the derivative d/dt by d/dξ (this introduces the factor ∆t = length of an element in each
differential equation). Then we substitute the unknowns y at the points ξ = 0, 0.5, and 1 (0.5 and
1 shall be our collocation points) for the unknown coefficients do, d1, d2 in Eq. (38). Since we
have two sets of y’s for the two differential equations, and three points (0, 0.5, 1) for every ele-
ment, we end up with 6 unknowns and 2·2 = 4 collocation equations at ξ = 0.5 and 1 in every
element. The matrix of this subsystem is shown in Table 8.

Table 8: Matrix entries for a single element of the r = 2 collocation finite element approximation.

Once the equations are assembled, the complete system of linear equations C·y = B looks like
Fig. 15. Efficient algorithms have to be written to solve such systems.

Figure 15: Form of the system of linear collocation and boundary equations for 4 elements and two
equations. Nonzero elements are found only in the dark gray areas.

y1(ξξξξ = 0) y2(ξξξξ = 0) y1(ξξξξ = 0.5) y2(ξξξξ = 0.5) y1(ξξξξ = 1) y2(ξξξξ = 1)

2/∆t a11 – 2/∆t a12

2/∆t a21 a22 – 2/∆t

1/∆t a11 – 1/∆t a12

1/∆t a21 a22 – 1/∆t

Left Boudary
Condition

Right Boudary
Condition

=

Element 1

Element 2

ELement 3

Element 4

C y B

· C·y = B
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